Extremal vertex-sets

2021 ◽  
pp. 317-334
Author(s):  
Serge Gaspers
Keyword(s):  
2000 ◽  
Vol 246 (1-2) ◽  
pp. 107-116 ◽  
Author(s):  
Toshihiro Fujito
Keyword(s):  

2018 ◽  
Vol 25 (10) ◽  
pp. 1071-1090 ◽  
Author(s):  
Yu Bao ◽  
Morihiro Hayashida ◽  
Pengyu Liu ◽  
Masayuki Ishitsuka ◽  
Jose C. Nacher ◽  
...  
Keyword(s):  

10.37236/6083 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Johannes Carmesin

Answering a question of Diestel, we develop a topological notion of gammoids in infinite graphs which, unlike traditional infinite gammoids, always define a matroid.As our main tool, we prove for any infinite graph $G$ with vertex-sets $A$ and $B$, if every finite subset of $A$ is linked to $B$ by disjoint paths, then the whole of $A$ can be linked to the closure of $B$ by disjoint paths or rays in a natural topology on $G$ and its ends.This latter theorem implies the topological Menger theorem of Diestel for locally finite graphs. It also implies a special case of the infinite Menger theorem of Aharoni and Berger.


2011 ◽  
Vol 03 (03) ◽  
pp. 323-336 ◽  
Author(s):  
FANICA GAVRIL

A circle n-gon is the region between n or fewer non-crossing chords of a circle, no chord connecting the arcs between two other chords; the sides of a circle n-gon are either chords or arcs of the circle. A circle n-gon graph is the intersection graph of a family of circle n-gons in a circle. The family of circle trapezoid graphs is exactly the family of circle 2-gon graphs and the family of circle graphs is exactly the family of circle 1-gon graphs. The family of circle n-gon graphs contains the polygon-circle graphs which have an intersection representation by circle polygons, each polygon with at most n chords. We describe a polynomial time algorithm to find a minimum weight feedback vertex set, or equivalently, a maximum weight induced forest, in a circle n-gon graph with positive weights, when its intersection model by n-gon-interval-filaments is given.


2002 ◽  
Vol 73 (3) ◽  
pp. 301-334 ◽  
Author(s):  
Marc Lindlbauer ◽  
Michael Voit

AbstractThe spherical functions of triangle buildings can be described in terms of certain two-dimensional orthogonal polynomials on Steiner's hypocycloid which are closely related to Hall-Littlewood polynomials. They lead to a one-parameter family of two-dimensional polynimial hypergroups. In this paper we investigate isotropic random walks on the vertex sets of triangle buildings in terms of their projections to these hypergroups. We present strong laws of large numbers, a central limit theorem, and a local limit theorem; all these results are well-known for homogeneous trees. Proofs are based on moment functions on hypergroups and on explicit expansions of the hypergroup characters in terms of certain two-dimensional Tchebychev polynimials.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 125
Author(s):  
Ismael González Yero

We consider in this work a new approach to study the simultaneous strong metric dimension of graphs families, while introducing the simultaneous version of the strong resolving graph. In concordance, we consider here connected graphs G whose vertex sets are represented as V ( G ) , and the following terminology. Two vertices u , v ∈ V ( G ) are strongly resolved by a vertex w ∈ V ( G ) , if there is a shortest w − v path containing u or a shortest w − u containing v. A set A of vertices of the graph G is said to be a strong metric generator for G if every two vertices of G are strongly resolved by some vertex of A. The smallest possible cardinality of any strong metric generator (SSMG) for the graph G is taken as the strong metric dimension of the graph G. Given a family F of graphs defined over a common vertex set V, a set S ⊂ V is an SSMG for F , if such set S is a strong metric generator for every graph G ∈ F . The simultaneous strong metric dimension of F is the minimum cardinality of any strong metric generator for F , and is denoted by Sd s ( F ) . The notion of simultaneous strong resolving graph of a graph family F is introduced in this work, and its usefulness in the study of Sd s ( F ) is described. That is, it is proved that computing Sd s ( F ) is equivalent to computing the vertex cover number of the simultaneous strong resolving graph of F . Several consequences (computational and combinatorial) of such relationship are then deduced. Among them, we remark for instance that we have proved the NP-hardness of computing the simultaneous strong metric dimension of families of paths, which is an improvement (with respect to the increasing difficulty of the problem) on the results known from the literature.


2014 ◽  
Vol 26 ◽  
pp. 7-15 ◽  
Author(s):  
Petr A. Golovach ◽  
Pinar Heggernes ◽  
Dieter Kratsch ◽  
Reza Saei
Keyword(s):  

1996 ◽  
Vol 148 (1-3) ◽  
pp. 119-131 ◽  
Author(s):  
Jiping Liu ◽  
Cheng Zhao
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document