Geometry of String Theory Compactifications

2022 ◽  
Author(s):  
Alessandro Tomasiello

String theory is a leading candidate for the unification of universal forces and matter, and one of its most striking predictions is the existence of small additional dimensions that have escaped detection so far. This book focuses on the geometry of these dimensions, beginning with the basics of the theory, the mathematical properties of spinors, and differential geometry. It further explores advanced techniques at the core of current research, such as G-structures and generalized complex geometry. Many significant classes of solutions to the theory's equations are studied in detail, from special holonomy and Sasaki–Einstein manifolds to their more recent generalizations involving fluxes for form fields. Various explicit examples are discussed, of interest to graduates and researchers.

2020 ◽  
Vol 2020 (6) ◽  
Author(s):  
Mariana Graña ◽  
Nicolás Kovensky ◽  
Ander Retolaza

2014 ◽  
Vol 23 (12) ◽  
pp. 1442006 ◽  
Author(s):  
Laurent Freidel ◽  
Robert G. Leigh ◽  
Djordje Minic

In a natural extension of the relativity principle, we speculate that a quantum theory of gravity involves two fundamental scales associated with both dynamical spacetime as well as dynamical momentum space. This view of quantum gravity is explicitly realized in a new formulation of string theory which involves dynamical phase-space and in which spacetime is a derived concept. This formulation naturally unifies symplectic geometry of Hamiltonian dynamics, complex geometry of quantum theory and real geometry of general relativity. The spacetime and momentum space dynamics, and thus dynamical phase-space, is governed by a new version of the renormalization group (RG).


2002 ◽  
Vol 622 (1-2) ◽  
pp. 3-45 ◽  
Author(s):  
Katsuyuki Sugiyama ◽  
Satoshi Yamaguchi

2018 ◽  
Vol 371 (3) ◽  
pp. 2109-2131
Author(s):  
M. A. Bailey ◽  
G. R. Cavalcanti ◽  
J. L. van der Leer Durán

2011 ◽  
Vol 61 (8) ◽  
pp. 1502-1515 ◽  
Author(s):  
Liviu Ornea ◽  
Radu Pantilie

2007 ◽  
Vol 04 (04) ◽  
pp. 523-532 ◽  
Author(s):  
JOSÉ M. ISIDRO

In symplectic mechanics, the magnetic term describing the interaction between a charged particle and an external magnetic field has to be introduced by hand. On the contrary, in generalized complex geometry, such magnetic terms in the symplectic form arise naturally by means of B-transformations. Here we prove that, regarding classical phase space as a generalized complex manifold, the transformation law for the symplectic form under the action of a weak magnetic field gives rise to Dirac's prescription for Poisson brackets in the presence of constraints.


Sign in / Sign up

Export Citation Format

Share Document