An airframe/inlet integrated full-waverider vehicle design using as upgraded aerodynamic method

2019 ◽  
Vol 123 (1266) ◽  
pp. 1135-1169 ◽  
Author(s):  
F. Ding ◽  
J. Liu ◽  
W. Huang ◽  
C. Peng ◽  
S. Chen

ABSTRACTWith the aims of overcoming the limitations of the existing basic flow model derived from an axisymmetric generating body and extending the aerodynamic design method of the airframe/inlet integrated waverider vehicle, this study develops an upgraded basic flow model derived from an axisymmetric shock wave. It then upgrades the design method for airframe/inlet integration of an air-breathing hypersonic waverider vehicle, which is termed the ‘full-waverider vehicle’ in this study. In this paper, first, the design principle and method for the upgraded full-waverider vehicle derived from an axisymmetric basic shock wave are described in detail. Second, an upgraded basic flow model that accounts for both internal and external flows is derived from an axisymmetric basic shock wave by use of both the streamline tracing method and the method of characteristics (MOC). Third, the upgraded full-waverider vehicle is developed from the upgraded basic flow model by the streamline tracing method. Fourth, the design theories and methodologies of both the upgraded basic flow model and the upgraded full-waverider vehicle are validated by a numerical computation method. Finally, the aerodynamic performances and viscous effects of both the upgraded basic flow model and the upgraded full-waverider vehicle are analysed by numerical computation. The obtained results show that the upgraded basic flow model and aerodynamic design method are effective for the design of the airframe/inlet integration of an air-breathing hypersonic waverider vehicle.

SPE Journal ◽  
2008 ◽  
Vol 13 (04) ◽  
pp. 423-431 ◽  
Author(s):  
Sebastien F. Matringe ◽  
Ruben Juanes ◽  
Hamdi A. Tchelepi

Summary The accuracy of streamline reservoir simulations depends strongly on the quality of the velocity field and the accuracy of the streamline tracing method. For problems described on complex grids (e.g., corner-point geometry or fully unstructured grids) with full-tensor permeabilities, advanced discretization methods, such as the family of multipoint flux approximation (MPFA) schemes, are necessary to obtain an accurate representation of the fluxes across control volume faces. These fluxes are then interpolated to define the velocity field within each control volume, which is then used to trace the streamlines. Existing methods for the interpolation of the velocity field and integration of the streamlines do not preserve the accuracy of the fluxes computed by MPFA discretizations. Here we propose a method for the reconstruction of the velocity field with high-order accuracy from the fluxes provided by MPFA discretization schemes. This reconstruction relies on a correspondence between the MPFA fluxes and the degrees of freedom of a mixed finite-element method (MFEM) based on the first-order Brezzi-Douglas-Marini space. This link between the finite-volume and finite-element methods allows the use of flux reconstruction and streamline tracing techniques developed previously by the authors for mixed finite elements. After a detailed description of our streamline tracing method, we study its accuracy and efficiency using challenging test cases. Introduction The next-generation reservoir simulators will be unstructured. Several research groups throughout the industry are now developing a new breed of reservoir simulators to replace the current industry standards. One of the main advances offered by these next generation simulators is their ability to support unstructured or, at least, strongly distorted grids populated with full-tensor permeabilities. The constant evolution of reservoir modeling techniques provides an increasingly realistic description of the geological features of petroleum reservoirs. To discretize the complex geometries of geocellular models, unstructured grids seem to be a natural choice. Their inherent flexibility permits the precise description of faults, flow barriers, trapping structures, etc. Obtaining a similar accuracy with more traditional structured grids, if at all possible, would require an overwhelming number of gridblocks. However, the added flexibility of unstructured grids comes with a cost. To accurately resolve the full-tensor permeabilities or the grid distortion, a two-point flux approximation (TPFA) approach, such as that of classical finite difference (FD) methods is not sufficient. The size of the discretization stencil needs to be increased to include more pressure points in the computation of the fluxes through control volume edges. To this end, multipoint flux approximation (MPFA) methods have been developed and applied quite successfully (Aavatsmark et al. 1996; Verma and Aziz 1997; Edwards and Rogers 1998; Aavatsmark et al. 1998b; Aavatsmark et al. 1998c; Aavatsmark et al. 1998a; Edwards 2002; Lee et al. 2002a; Lee et al. 2002b). In this paper, we interpret finite volume discretizations as MFEM for which streamline tracing methods have already been developed (Matringe et al. 2006; Matringe et al. 2007b; Juanes and Matringe In Press). This approach provides a natural way of reconstructing velocity fields from TPFA or MPFA fluxes. For finite difference or TPFA discretizations, the proposed interpretation provides mathematical justification for Pollock's method (Pollock 1988) and some of its extensions to distorted grids (Cordes and Kinzelbach 1992; Prévost et al. 2002; Hægland et al. 2007; Jimenez et al. 2007). For MPFA, our approach provides a high-order streamline tracing algorithm that takes full advantage of the flux information from the MPFA discretization.


1990 ◽  
Vol 112 (1) ◽  
pp. 44-49 ◽  
Author(s):  
Zhao Xiaolu ◽  
Qin Lisen

An aerodynamic design method, which is based on the Mean Stream Surface Method (MSSM), has been developed for designing centrifugal compressor impeller blades. As a component of a CAD system for centrifugal compressor, it is convenient to use the presented method for generating impeller blade geometry, taking care of manufacturing as well as aerodynamic aspects. The design procedure starts with an S2m indirect solution. Afterward from the specified S2m surface, by the use of Taylor series expansion, the blade geometry is generated by straight-line elements to meet the manufacturing requirements. Simultaneously, the fluid dynamic quantities across the blade passage can be determined directly. In terms of these results, the designer can revise the distribution of angular momentum along the shroud and hub, which are associated with blade loading, to get satisfactory velocities along the blade surfaces in order to avoid or delay flow separation.


Author(s):  
Shigeki Senoo ◽  
Hideki Ono

Both inflow and outflow velocities near the blade tip become supersonic when the blade length exceeds a threshold limit. The aerofoil near the tip of such a long blade has four features that demand an original supersonic turbine aerofoil design: supersonic flow in the entire field, high reaction, large stagger angle, and large pitch-to-chord ratio. This paper describes design method development for the supersonic turbine aerofoil. First, the aerofoil shape is defined using a curve with continuity in the gradient of the curvature. Second, six loss generation mechanisms are clarified by turbulent flow analysis. Third, an allowable design space between the pitch-to-chord ratio, the stagger angle and the axial-chord-to-pitch ratio is clarified by formulating three geometrical constraints to accelerate supersonic flow smoothly. When there is no solution in the theoretically allowable design space because of the large pitch-to-chord ratio, methods to reduce shock wave losses are proposed. Increasing the outlet metal angle of the pressure surface by around 10 deg from the theoretical outlet flow angle reduces the loss caused by the trailing shock wave. The physical mechanism for this is as follows: the increased outlet metal angle increases the outlet flow passage area so that the overexpansion is suppressed downstream from the flow passage. Fourth, both a cusped leading edge and an upstream pressure surface which has both an angle corresponding to the inflow angle and near-zero curvature can reduce the loss caused by the leading shock wave and satisfy the unique incidence relation. Finally, the aerodynamic performance of the supersonic turbine cascade and the design method are validated by supersonic cascade wind tunnel tests.


Author(s):  
Nobuhito Oka ◽  
Masato Furukawa ◽  
Kazutoyo Yamada ◽  
Akihiro Oka ◽  
Yasushi Kurokawa

The new type of shrouded wind turbine called “wind-lens turbine” has been developed. The wind-lens turbine has a brimmed diffuser called “wind-lens”, by which the wind concentration on the turbine blade and the significant enhancement of the turbine output can be achieved. A simultaneous optimization method for the aerodynamic design of rotor blade and wind-lens has been developed. The present optimal design method is based on a genetic algorithm (GA) which enables multi objective aerodynamic optimization. In the present study, aerodynamic performances and flow fields of the Pareto optimal solutions of wind-lens turbines designed by the present optimal design method have been investigated by wind-tunnel tests and three-dimensional Reynolds averaged Navier-Stokes (RANS) analyses. Output power coefficients obtained from the wind-tunnel tests in the optimal wind-lens turbine exceeded the Betz limit, which is the performance limitation for bare wind turbines. The numerical results and the experimental results show that the suppression of flow separations in the diffuser is important to achieve significant improvement in aerodynamic performances. As a result, it is found that the aerodynamic performance of wind-lens turbine is significantly affected by the interrelationship between the internal and external flow fields around the wind-lens.


Sign in / Sign up

Export Citation Format

Share Document