An efficient inverse aerodynamic design method for subsonic flows

2000 ◽  
Author(s):  
William Milholen II
2001 ◽  
Vol 38 (5) ◽  
pp. 918-923 ◽  
Author(s):  
William E. Milholen

2019 ◽  
Vol 123 (1266) ◽  
pp. 1135-1169 ◽  
Author(s):  
F. Ding ◽  
J. Liu ◽  
W. Huang ◽  
C. Peng ◽  
S. Chen

ABSTRACTWith the aims of overcoming the limitations of the existing basic flow model derived from an axisymmetric generating body and extending the aerodynamic design method of the airframe/inlet integrated waverider vehicle, this study develops an upgraded basic flow model derived from an axisymmetric shock wave. It then upgrades the design method for airframe/inlet integration of an air-breathing hypersonic waverider vehicle, which is termed the ‘full-waverider vehicle’ in this study. In this paper, first, the design principle and method for the upgraded full-waverider vehicle derived from an axisymmetric basic shock wave are described in detail. Second, an upgraded basic flow model that accounts for both internal and external flows is derived from an axisymmetric basic shock wave by use of both the streamline tracing method and the method of characteristics (MOC). Third, the upgraded full-waverider vehicle is developed from the upgraded basic flow model by the streamline tracing method. Fourth, the design theories and methodologies of both the upgraded basic flow model and the upgraded full-waverider vehicle are validated by a numerical computation method. Finally, the aerodynamic performances and viscous effects of both the upgraded basic flow model and the upgraded full-waverider vehicle are analysed by numerical computation. The obtained results show that the upgraded basic flow model and aerodynamic design method are effective for the design of the airframe/inlet integration of an air-breathing hypersonic waverider vehicle.


1990 ◽  
Vol 112 (1) ◽  
pp. 44-49 ◽  
Author(s):  
Zhao Xiaolu ◽  
Qin Lisen

An aerodynamic design method, which is based on the Mean Stream Surface Method (MSSM), has been developed for designing centrifugal compressor impeller blades. As a component of a CAD system for centrifugal compressor, it is convenient to use the presented method for generating impeller blade geometry, taking care of manufacturing as well as aerodynamic aspects. The design procedure starts with an S2m indirect solution. Afterward from the specified S2m surface, by the use of Taylor series expansion, the blade geometry is generated by straight-line elements to meet the manufacturing requirements. Simultaneously, the fluid dynamic quantities across the blade passage can be determined directly. In terms of these results, the designer can revise the distribution of angular momentum along the shroud and hub, which are associated with blade loading, to get satisfactory velocities along the blade surfaces in order to avoid or delay flow separation.


Author(s):  
Nobuhito Oka ◽  
Masato Furukawa ◽  
Kazutoyo Yamada ◽  
Akihiro Oka ◽  
Yasushi Kurokawa

The new type of shrouded wind turbine called “wind-lens turbine” has been developed. The wind-lens turbine has a brimmed diffuser called “wind-lens”, by which the wind concentration on the turbine blade and the significant enhancement of the turbine output can be achieved. A simultaneous optimization method for the aerodynamic design of rotor blade and wind-lens has been developed. The present optimal design method is based on a genetic algorithm (GA) which enables multi objective aerodynamic optimization. In the present study, aerodynamic performances and flow fields of the Pareto optimal solutions of wind-lens turbines designed by the present optimal design method have been investigated by wind-tunnel tests and three-dimensional Reynolds averaged Navier-Stokes (RANS) analyses. Output power coefficients obtained from the wind-tunnel tests in the optimal wind-lens turbine exceeded the Betz limit, which is the performance limitation for bare wind turbines. The numerical results and the experimental results show that the suppression of flow separations in the diffuser is important to achieve significant improvement in aerodynamic performances. As a result, it is found that the aerodynamic performance of wind-lens turbine is significantly affected by the interrelationship between the internal and external flow fields around the wind-lens.


Author(s):  
H Chen

This paper discusses aerodynamic design methods of volute casings used in turbocharger turbines. A quasi-three-dimensional (Q-3D) design method is proposed in which a group of extended two-dimensional potential flow equations and the streamline equation are numerically solved to obtain the geometry of spiral volutes. A tongue loss model, based on the turbulence wake theory, is also presented, and good agreement with experimental data is shown.


AIAA Journal ◽  
1987 ◽  
Vol 25 (9) ◽  
pp. 1199-1206 ◽  
Author(s):  
Michael B. Giles ◽  
Mark Drela

Author(s):  
Xiaodong Liu ◽  
Peiliang Zhang ◽  
Guanghong He ◽  
Yongen Wang ◽  
Xudong Yang

In order to solve the multi-objective multi-constraint design in aerodynamic design of flying wing, the aerodynamic optimization design based on the adjoint method is studied. In terms of the principle of the adjoint equation, the boundary conditions and the gradient equations are derived. The Navier-Stokes equations and adjoint aerodynamic optimization design method are adopted, the optimization design of the transonic drag reduction for the two different aspect ratio of the flying wing configurations is carried out. The results of the optimization design are as follows: Under the condition of satisfying the aerodynamic and geometric constraints, the transonic shock resistance of the flying wing is weakened to a great extent, which proves that the developed method has high optimization efficiency and good optimization effect in the multi-objective multi-constraint aerodynamic design of the flying wing.


2018 ◽  
Vol 138 ◽  
pp. 94-109 ◽  
Author(s):  
Zhenpeng Li ◽  
Zhengping Zou ◽  
Lichao Yao ◽  
Chao Fu ◽  
Lei Bian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document