Transonic industrial wind tunnel testing in the 2020s

2021 ◽  
pp. 1-27
Author(s):  
D.I. Greenwell

Abstract Wind tunnels remain an essential element in the design and development of flight vehicles. However, graduates in aerospace engineering tend to have had little exposure to the demands of industrial experimental work, particularly at high speed, a situation exacerbated by a lack of up-to-date reference material. In an attempt to fill this gap, this paper presents an overview of the current and near-term status and usage of transonic industrial wind tunnels. The review is aimed at recent entrants to the field, with the aim of helping them make the step from research projects in small university facilities to commercial projects in large industrial facilities. In addition, a picture has emerged from the review that contradicts received wisdom that the wind tunnel is in decline. Globally, the industrial transonic wind tunnel is undergoing somewhat of a renaissance. Numbers are increasing, investment levels are rising, capabilities are being enhanced, and facilities are busy.

2014 ◽  
Vol 986-987 ◽  
pp. 1629-1633
Author(s):  
Zheng Yu Zhang ◽  
Xu Hui Huang ◽  
Jiang Yin ◽  
Han Xuan Lai

Videogrammetric measurement is a research focus for the organizations of wind tunnel test because of its no special requirements on the test model, its key techniques for the vibration environment of the high speed wind tunnel are introduced by this paper, such as the solution of exterior parameters with big-angle large overlap, the algorithm of image processing for extracting marked point, the method of camera calibration and wave-front distortion field measurement. The great requirements and application prospects of videogrammetry in wind tunnel fine testing have been demonstrated by several practice experiments, including to measure test model’s angle of attack, dynamic deformations and wave-front distortion field in high speed wind tunnels whose test section size is 2 meters.


1963 ◽  
Vol 30 (1) ◽  
pp. 158-159 ◽  
Author(s):  
Bernhard H. Goethert ◽  
J. Lukasiewicz

Author(s):  
Mohamed Qenawy ◽  
Lin Yuan ◽  
Yingzheng Liu ◽  
Di Peng ◽  
Xin Wen ◽  
...  

Abstract Wind-tunnel testing of turbines cascade is an important technique for quantifying the realistic conditions of turbine-vane film cooling. However, the complex and expensive facilities needed for the multipassage design of such wind tunnels have prompted the introduction of the single-passage design strategy. In this contribution, detailed procedures for building a novel single-passage transonic wind-tunnel using additive manufacturing are presented. In addition, the detailed flow structure caused by the passage was investigated. The proposed design was evaluated step-by-step using an integrated model that successively comprised two-dimensional (2D) periodic passage simulation, 2D single-passage simulation, three-dimensional (3D) single-passage simulation, construction, and testing. The proposed design was found to achieve flow periodicity at transonic flow conditions with relatively low-flow consumption. The results were validated by comparison to the available literature data. In addition, an endwall-cooling configuration was successfully deployed using fast-response pressure-sensitive paint (fast-PSP). This study, combined with the help of commercial software and 3D printing, shed light upon strategies for time- and cost-reduction in linear cascade design, which could benefit the turbomachinery community.


Sign in / Sign up

Export Citation Format

Share Document