scholarly journals Dilation volumes of sets of finite perimeter

2018 ◽  
Vol 50 (4) ◽  
pp. 1095-1118
Author(s):  
Markus Kiderlen ◽  
Jan Rataj

Abstract In this paper we analyze the first-order behavior (that is, the right-sided derivative) of the volume of the dilation A⊕tQ as t converges to 0. Here A and Q are subsets of n-dimensional Euclidean space, A has finite perimeter, and Q is finite. If Q consists of two points only, n and n+u, say, this derivative coincides up to a sign with the directional derivative of the covariogram of A in direction u. By known results for the covariogram, this derivative can therefore be expressed by the cosine transform of the surface area measure of A. We extend this result to finite sets Q and use it to determine the derivative of the contact distribution function with finite structuring element of a stationary random set at 0. The proofs are based on an approximation of the indicator function of A by smooth functions of bounded variation.

2010 ◽  
Vol 42 (1) ◽  
pp. 48-68 ◽  
Author(s):  
L. Muche

In this paper we present formulae for contact distributions of a Voronoi tessellation generated by a homogeneous Poisson point process in the d-dimensional Euclidean space. Expressions are given for the probability density functions and moments of the linear and spherical contact distributions. They are double and simple integral formulae, which are tractable for numerical evaluation and for large d. The special cases d = 2 and d = 3 are investigated in detail, while, for d = 3, the moments of the spherical contact distribution function are expressed by standard functions. Also, the closely related chord length distribution functions are considered.


2003 ◽  
Vol 35 (03) ◽  
pp. 583-602 ◽  
Author(s):  
Markus Kiderlen ◽  
Eva B. Vedel Jensen

Estimation methods for the directional measure of a stationary planar random set Z, based only on discretized realizations of Z, are discussed. Properties of the discretized set that can be derived by comparing neighbouring grid points are used. Larger grid configurations of more than two grid points are considered. It is shown that the probabilities of observing the various types of configurations can be expressed in terms of the first contact distribution function of Z (with a finite structuring element). An important prerequisite result concerning deterministic dilation areas is also established. The inference on the mean normal measure based on 2×2 configurations is discussed in detail.


2010 ◽  
Vol 42 (01) ◽  
pp. 48-68 ◽  
Author(s):  
L. Muche

In this paper we present formulae for contact distributions of a Voronoi tessellation generated by a homogeneous Poisson point process in the d-dimensional Euclidean space. Expressions are given for the probability density functions and moments of the linear and spherical contact distributions. They are double and simple integral formulae, which are tractable for numerical evaluation and for large d. The special cases d = 2 and d = 3 are investigated in detail, while, for d = 3, the moments of the spherical contact distribution function are expressed by standard functions. Also, the closely related chord length distribution functions are considered.


2003 ◽  
Vol 35 (3) ◽  
pp. 583-602 ◽  
Author(s):  
Markus Kiderlen ◽  
Eva B. Vedel Jensen

Estimation methods for the directional measure of a stationary planar random set Z, based only on discretized realizations of Z, are discussed. Properties of the discretized set that can be derived by comparing neighbouring grid points are used. Larger grid configurations of more than two grid points are considered. It is shown that the probabilities of observing the various types of configurations can be expressed in terms of the first contact distribution function of Z (with a finite structuring element). An important prerequisite result concerning deterministic dilation areas is also established. The inference on the mean normal measure based on 2×2 configurations is discussed in detail.


2017 ◽  
Vol 4 (1) ◽  
pp. 18-31
Author(s):  
Namita Das

Abstract In this paper we consider the map L defined on the Bergman space $L_a^2({{\rm\mathbb{C}}_{\rm{ + }}})$ of the right half plane ℂ+ by $(Lf)(w) = \pi M'(w)\int\limits_{{{\rm\mathbb{C}}_{\rm{ + }}}} {\left( {{f \over {M'}}} \right)} (s){\left| {{b_w}(s)} \right|^2}d\tilde A(s)$ where ${b_{\bar w}}(s) = {1 \over {\sqrt \pi }}{{1 + w} \over {1 + w}}{{2{\mathop{Re}\nolimits} w} \over {{{(s + w)}^2}}}$ , s ∈ ℂ+ and $Ms = {{1 - s} \over {1 + s}}$ . We show that L commutes with the weighted composition operators Wa, a ∈ 𝔻 defined on $L_a^2({{\rm\mathbb{C}}_{\rm{ + }}})$ , as ${W_a}f = (f \circ {t_a}){{M'} \over {M' \circ {t_a}}}$ , $f \in L_a^2(\mathbb{C_ + })$ . Here $${t_a}(s) = {{ - ids + (1 - c)} \over {(1 + c)s + id}} , if a = c + id ∈ 𝔻 c, d ∈ ℝ. For a ∈ 𝔻, define ${V_a}:L_a^2({{\mathbb{C}}_{\rm{ + }}}) \to L_a^2({{\mathbb{C}}_{\rm{ + }}})$ by (Vag)(s) = (g∘ta)(s)la(s) where $la(s) = {{1 - {{\left| a \right|}^2}} \over {{{((1 + c)s + id)}^2}}}$ .We look at the action of the class of unitary operators Va, a ∈ 𝔻 on the linear operator L. We establish that Lˆ = L where $\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over L} = \int\limits_{\mathbb{D}} {{V_a}L{V_a}dA(a)}$ and dA is the area measure on 𝔻. In fact the map L satisfies the averaging condition $$\tilde L({w_1}) = \int\limits_{\mathbb{D}} {\tilde L({t_{\bar a}}({w_1}))dA(a),{\rm{for all }}{w_1} \in {{\rm{C}}_{\rm{ + }}}}$$ where $\tilde L({w_1}) = \left\langle {L{b_{{{\bar w}_1}}},{b_{{{\bar w}_1}}}} \right\rangle$.


2008 ◽  
Vol 73 (3) ◽  
pp. 314-321 ◽  
Author(s):  
Stanislav Labík ◽  
William R. Smith

A new analytical expression for the contact value of the solute-solvent pair distribution function of a binary hard-sphere mixture at infinite dilution is proposed, based on scaled-particle-theory-like arguments. For high solute-solvent diameter ratio it predicts perfect agreement with the simulation results.


Author(s):  
Mario Alvarez-Picallo ◽  
Jean-Simon Pacaud Lemay

AbstractCartesian differential categories are categories equipped with a differential combinator which axiomatizes the directional derivative. Important models of Cartesian differential categories include classical differential calculus of smooth functions and categorical models of the differential $$\lambda $$ λ -calculus. However, Cartesian differential categories cannot account for other interesting notions of differentiation such as the calculus of finite differences or the Boolean differential calculus. On the other hand, change action models have been shown to capture these examples as well as more “exotic” examples of differentiation. However, change action models are very general and do not share the nice properties of a Cartesian differential category. In this paper, we introduce Cartesian difference categories as a bridge between Cartesian differential categories and change action models. We show that every Cartesian differential category is a Cartesian difference category, and how certain well-behaved change action models are Cartesian difference categories. In particular, Cartesian difference categories model both the differential calculus of smooth functions and the calculus of finite differences. Furthermore, every Cartesian difference category comes equipped with a tangent bundle monad whose Kleisli category is again a Cartesian difference category.


2011 ◽  
Vol 20 (3) ◽  
pp. 203 ◽  
Author(s):  
Alexander Bezrukov ◽  
Dietrich Stoyan ◽  
Monika Bargieł

This paper reports on spatial-statistical analyses for simulated random packings of spheres with random diameters. The simulation methods are the force-biased algorithm and the Jodrey-Tory sedimentation algorithm. The sphere diameters are taken as constant or following a bimodal or lognormal distribution. Standard characteristics of spatial statistics are used to describe these packings statistically, namely volume fraction, pair correlation function of the system of sphere centres and spherical contact distribution function of the set-theoretic union of all spheres. Furthermore, the coordination numbers are analysed.


Sign in / Sign up

Export Citation Format

Share Document