scholarly journals Detailed balance, local detailed balance, and global potential for stochastic chemical reaction networks

2021 ◽  
Vol 53 (3) ◽  
pp. 886-922
Author(s):  
Chen Jia ◽  
Da-Quan Jiang ◽  
Youming Li

AbstractDetailed balance of a chemical reaction network can be defined in several different ways. Here we investigate the relationship among four types of detailed balance conditions: deterministic, stochastic, local, and zero-order local detailed balance. We show that the four types of detailed balance are equivalent when different reactions lead to different species changes and are not equivalent when some different reactions lead to the same species change. Under the condition of local detailed balance, we further show that the system has a global potential defined over the whole space, which plays a central role in the large deviation theory and the Freidlin–Wentzell-type metastability theory of chemical reaction networks. Finally, we provide a new sufficient condition for stochastic detailed balance, which is applied to construct a class of high-dimensional chemical reaction networks that both satisfies stochastic detailed balance and displays multistability.

2020 ◽  
Vol 56 (26) ◽  
pp. 3725-3728
Author(s):  
Oliver R. Maguire ◽  
Albert S. Y. Wong ◽  
Jan Harm Westerdiep ◽  
Wilhelm T. S. Huck

Many natural and man-made complex systems display early warning signals when close to an abrupt shift in behaviour. Here we show that such early warning signals appear in a complex chemical reaction network.


Author(s):  
Dominic P Searson ◽  
Mark J Willis ◽  
Simon J Horne ◽  
Allen R Wright

This article demonstrates, using simulations, the potential of the S-system formalism for the inference of unknown chemical reaction networks from simple experimental data, such as that typically obtained from laboratory scale reaction vessels. Virtually no prior knowledge of the products and reactants is assumed. S-systems are a power law formalism for the canonical approximate representation of dynamic non-linear systems. This formalism has the useful property that the structure of a network is dictated only by the values of the power law parameters. This means that network inference problems (e.g. inference of the topology of a chemical reaction network) can be recast as parameter estimation problems. The use of S-systems for network inference from data has been reported in a number of biological fields, including metabolic pathway analysis and the inference of gene regulatory networks. Here, the methodology is adapted for use as a hybrid modelling tool to facilitate the reverse engineering of chemical reaction networks using time series concentration data from fed-batch reactor experiments. The principle of the approach is demonstrated with noisy simulated data from fed-batch reactor experiments using a hypothetical reaction network comprising 5 chemical species involved in 4 parallel reactions. A co-evolutionary algorithm is employed to evolve the structure and the parameter values of the S-system equations concurrently. The S-system equations are then interpreted in order to construct a network diagram that accurately reflects the underlying chemical reaction network.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Brandon C Reyes ◽  
Irene Otero-Muras ◽  
Vladislav A Petyuk

Abstract Background Theoretical analysis of signaling pathways can provide a substantial amount of insight into their function. One particular area of research considers signaling pathways capable of assuming two or more stable states given the same amount of signaling ligand. This phenomenon of bistability can give rise to switch-like behavior, a mechanism that governs cellular decision making. Investigation of whether or not a signaling pathway can confer bistability and switch-like behavior, without knowledge of specific kinetic rate constant values, is a mathematically challenging problem. Recently a technique based on optimization has been introduced, which is capable of finding example parameter values that confer switch-like behavior for a given pathway. Although this approach has made it possible to analyze moderately sized pathways, it is limited to reaction networks that presume a uniterminal structure. It is this limited structure we address by developing a general technique that applies to any mass action reaction network with conservation laws. Results In this paper we developed a generalized method for detecting switch-like bistable behavior in any mass action reaction network with conservation laws. The method involves (1) construction of a constrained optimization problem using the determinant of the Jacobian of the underlying rate equations, (2) minimization of the objective function to search for conditions resulting in a zero eigenvalue, (3) computation of a confidence level that describes if the global minimum has been found and (4) evaluation of optimization values, using either numerical continuation or directly simulating the ODE system, to verify that a bistability region exists. The generalized method has been tested on three motifs known to be capable of bistability. Conclusions We have developed a variation of an optimization-based method for the discovery of bistability, which is not limited to uniterminal chemical reaction networks. Successful completion of the method provides an S-shaped bifurcation diagram, which indicates that the network acts as a bistable switch for the given optimization parameters.


2015 ◽  
Vol 21 (2) ◽  
pp. 166-192 ◽  
Author(s):  
Erwan Bigan ◽  
Jean-Marc Steyaert ◽  
Stéphane Douady

We show that self-replication of a chemical system encapsulated within a membrane growing from within is possible without any explicit feature such as autocatalysis or metabolic closure, and without the need for their emergence through complexity. We use a protocell model relying upon random conservative chemical reaction networks with arbitrary stoichiometry, and we investigate the protocell's capability for self-replication, for various numbers of reactions in the network. We elucidate the underlying mechanisms in terms of simple minimal conditions pertaining only to the topology of the embedded chemical reaction network. A necessary condition is that each moiety must be fed, and a sufficient condition is that each siphon is fed. Although these minimal conditions are purely topological, by further endowing conservative chemical reaction networks with thermodynamically consistent kinetics, we show that the growth rate tends to increase on increasing the Gibbs energy per unit molecular weight of the nutrient and on decreasing that of the membrane precursor.


2009 ◽  
Vol 15 (1) ◽  
pp. 89-103 ◽  
Author(s):  
Tom Lenaerts ◽  
Hugues Bersini

A coevolutionary model is discussed that incorporates the logical structure of constitutional chemistry and its kinetics on the one hand and the topological evolution of the chemical reaction network on the other hand. The motivation for designing this model is twofold. First, experiments that are to provide insight into chemical problems should be expressed in a syntax that remains as close as possible to real chemistry. Second, the study of physical properties of the complex chemical reaction networks requires growing models that incorporate features realistic from a biochemical perspective. In this article the theory and algorithms underlying the coevolutionary model are explained, and two illustrative examples are provided. These examples show that one needs to be careful in making general claims concerning the structure of chemical reaction networks.


2009 ◽  
Vol 15 (5) ◽  
pp. 578-597
Author(s):  
Marcello Farina ◽  
Sergio Bittanti

2021 ◽  
Author(s):  
Samuel M. Blau ◽  
Hetal D Patel ◽  
Evan Walter Clark Spotte-Smith ◽  
Xiaowei Xie ◽  
Shyam Dwaraknath ◽  
...  

Modeling reactivity with chemical reaction networks could yield fundamental mechanistic understanding that would expedite the development of processes and technologies for energy storage, medicine, catalysis, and more. Thus far, reaction...


2020 ◽  
Vol 53 (2) ◽  
pp. 11497-11502
Author(s):  
Lőrinc Márton ◽  
Katalin M. Hangos ◽  
Gábor Szederkényi

Sign in / Sign up

Export Citation Format

Share Document