scholarly journals SIMPLE CONTINUITY INEQUALITIES FOR RUIN PROBABILITY IN THE CLASSICAL RISK MODEL

2016 ◽  
Vol 46 (3) ◽  
pp. 801-814 ◽  
Author(s):  
Evgueni Gordienko ◽  
Patricia Vázquez-Ortega

AbstractA simple technique for continuity estimation for ruin probability in the compound Poisson risk model is proposed. The approach is based on the contractive properties of operators involved in the integral equations for the ruin probabilities. The corresponding continuity inequalities are expressed in terms of the Kantorovich and weighted Kantorovich distances between distribution functions of claims. Both general and light-tailed distributions are considered.

2020 ◽  
Vol 13 (12) ◽  
pp. 298
Author(s):  
Yuan Gao ◽  
Lingju Chen ◽  
Jiancheng Jiang ◽  
Honglong You

In this paper we study estimating ruin probability which is an important problem in insurance. Our work is developed upon the existing nonparametric estimation method for the ruin probability in the classical risk model, which employs the Fourier transform but requires smoothing on the density of the sizes of claims. We propose a nonparametric estimation approach which does not involve smoothing and thus is free of the bandwidth choice. Compared with the Fourier-transformation-based estimators, our estimators have simpler forms and thus are easier to calculate. We establish asymptotic distributions of our estimators, which allows us to consistently estimate the asymptotic variances of our estimators with the plug-in principle and enables interval estimates of the ruin probability.


1997 ◽  
Vol 27 (2) ◽  
pp. 297-318 ◽  
Author(s):  
S. Asmussen ◽  
K. Binswanger

AbstractWe consider the classical risk model with subexponential claim size distribution. Three methods are presented to simulate the probability of ultimate ruin and we investigate their asymptotic efficiency. One, based upon a conditional Monte Carlo idea involving the order statistics, is shown to be asymptotically efficient in a certain sense. We use the simulation methods to study the accuracy of the standard Embrechts-Veraverbeke [16] approximation for the ruin probability and also suggest a new one based upon ideas of Hogan [21].


2012 ◽  
Vol 2012 ◽  
pp. 1-26 ◽  
Author(s):  
Yan Li ◽  
Guoxin Liu

We consider the dynamic proportional reinsurance in a two-dimensional compound Poisson risk model. The optimization in the sense of minimizing the ruin probability which is defined by the sum of subportfolio is being ruined. Via the Hamilton-Jacobi-Bellman approach we find a candidate for the optimal value function and prove the verification theorem. In addition, we obtain the Lundberg bounds and the Cramér-Lundberg approximation for the ruin probability and show that as the capital tends to infinity, the optimal strategies converge to the asymptotically optimal constant strategies. The asymptotic value can be found by maximizing the adjustment coefficient.


2008 ◽  
Vol 45 (03) ◽  
pp. 818-830 ◽  
Author(s):  
Jinxia Zhu ◽  
Hailiang Yang

In this paper we consider a compound Poisson risk model where the insurer earns credit interest at a constant rate if the surplus is positive and pays out debit interest at another constant rate if the surplus is negative. Absolute ruin occurs at the moment when the surplus first drops below a critical value (a negative constant). We study the asymptotic properties of the absolute ruin probability of this model. First we investigate the asymptotic behavior of the absolute ruin probability when the claim size distribution is light tailed. Then we study the case where the common distribution of claim sizes are heavy tailed.


2002 ◽  
Vol 32 (2) ◽  
pp. 299-313 ◽  
Author(s):  
David C.M. Dickson ◽  
Howard R. Waters

AbstractWe study the distribution of the time to ruin in the classical risk model. We consider some methods of calculating this distribution, in particular by using algorithms to calculate finite time ruin probabilities. We also discuss calculation of the moments of this distribution.


Sign in / Sign up

Export Citation Format

Share Document