asymptotic efficiency
Recently Published Documents


TOTAL DOCUMENTS

336
(FIVE YEARS 17)

H-INDEX

32
(FIVE YEARS 1)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Maria Iannario ◽  
Anna Clara Monti ◽  
Pietro Scalera

Abstract The choice of the number m of response categories is a crucial issue in categorization of a continuous response. The paper exploits the Proportional Odds Models’ property which allows to generate ordinal responses with a different number of categories from the same underlying variable. It investigates the asymptotic efficiency of the estimators of the regression coefficients and the accuracy of the derived inferential procedures when m varies. The analysis is based on models with closed-form information matrices so that the asymptotic efficiency can be analytically evaluated without need of simulations. The paper proves that a finer categorization augments the information content of the data and consequently shows that the asymptotic efficiency and the power of the tests on the regression coefficients increase with m. The impact of the loss of information produced by merging categories on the efficiency of the estimators is also considered, highlighting its risks especially when performed in its extreme form of dichotomization. Furthermore, the appropriate value of m for various sample sizes is explored, pointing out that a large number of categories can offset the limited amount of information of a small sample by a better quality of the data. Finally, two case studies on the quality of life of chemotherapy patients and on the perception of pain, based on discretized continuous scales, illustrate the main findings of the paper.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 4950
Author(s):  
Gianmarco Romano

The moment-based M2M4 signal-to-noise (SNR) estimator was proposed for a complex sinusoidal signal with a deterministic but unknown phase corrupted by additive Gaussian noise by Sekhar and Sreenivas. The authors studied its performances only through numerical examples and concluded that the proposed estimator is asymptotically efficient and exhibits finite sample super-efficiency for some combinations of signal and noise power. In this paper, we derive the analytical asymptotic performances of the proposed M2M4 SNR estimator, and we show that, contrary to what it has been concluded by Sekhar and Sreenivas, the proposed estimator is neither (asymptotically) efficient nor super-efficient. We also show that when dealing with deterministic signals, the covariance matrix needed to derive asymptotic performances must be explicitly derived as its known general form for random signals cannot be extended to deterministic signals. Numerical examples are provided whose results confirm the analytical findings.


Mathematics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 105
Author(s):  
Georgy Shevlyakov

This article is partially a review and partially a contribution. The classical two approaches to robustness, Huber’s minimax and Hampel’s based on influence functions, are reviewed with the accent on distribution classes of a non-neighborhood nature. Mainly, attention is paid to the minimax Huber’s M-estimates of location designed for the classes with bounded quantiles and Meshalkin-Shurygin’s stable M-estimates. The contribution is focused on the comparative performance evaluation study of these estimates, together with the classical robust M-estimates under the normal, double-exponential (Laplace), Cauchy, and contaminated normal (Tukey gross error) distributions. The obtained results are as follows: (i) under the normal, double-exponential, Cauchy, and heavily-contaminated normal distributions, the proposed robust minimax M-estimates outperform the classical Huber’s and Hampel’s M-estimates in asymptotic efficiency; (ii) in the case of heavy-tailed double-exponential and Cauchy distributions, the Meshalkin-Shurygin’s radical stable M-estimate also outperforms the classical robust M-estimates; (iii) for moderately contaminated normal, the classical robust estimates slightly outperform the proposed minimax M-estimates. Several directions of future works are enlisted.


2021 ◽  
Vol 12 (2) ◽  
pp. 405-442 ◽  
Author(s):  
Chenchuan (Mark) Li ◽  
Ulrich K. Müller

We consider inference about a scalar coefficient in a linear regression model. One previously considered approach to dealing with many controls imposes sparsity, that is, it is assumed known that nearly all control coefficients are (very nearly) zero. We instead impose a bound on the quadratic mean of the controls' effect on the dependent variable, which also has an interpretation as an R 2‐type bound on the explanatory power of the controls. We develop a simple inference procedure that exploits this additional information in general heteroskedastic models. We study its asymptotic efficiency properties and compare it to a sparsity‐based approach in a Monte Carlo study. The method is illustrated in three empirical applications.


2021 ◽  
Vol 16 (3) ◽  
pp. 943-978
Author(s):  
Simon Loertscher ◽  
Claudio Mezzetti

The price mechanism is fundamental to economics but difficult to reconcile with incentive compatibility and individual rationality. We introduce a double clock auction for a homogeneous good market with multidimensional private information and multiunit traders that is deficit‐free, ex post individually rational, constrained efficient, and makes sincere bidding a dominant strategy equilibrium. Under a weak dependence and an identifiability condition, our double clock auction is also asymptotically efficient. Asymptotic efficiency is achieved by estimating demand and supply using information from the bids of traders that have dropped out and following a tâtonnement process that adjusts the clock prices based on the estimates.


Sign in / Sign up

Export Citation Format

Share Document