ON THE FAMILY OF DISTRIBUTIONS WITH ACTUARIAL APPLICATIONS

2021 ◽  
pp. 1-26
Author(s):  
Deepesh Bhati ◽  
Enrique Calderín-Ojeda

ABSTRACT In this paper, a new three-parameter discrete family of distributions, the $$r{\cal B}ell$$ family, is introduced. The family is based on series expansion of the r-Bell polynomials. The proposed model generalises the classical Poisson and the recently proposed Bell and Bell–Touchard distributions. It exhibits interesting stochastic properties. Its probabilities can be computed by a recursive formula that allows us to calculate the probability function of the amount of aggregate claims in the collective risk model in terms of an integral equation. Univariate and bivariate regression models are presented. The former regression model is used to explain the number of out-of-use claims in an automobile insurance portfolio, by showing a good out-of-sample performance. The latter is used to describe the number of out-of-use and parking claims jointly. This family provides an alternative to other traditionally used distributions to describe count data such as the negative binomial and Poisson-inverse Gaussian models.

Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1400 ◽  
Author(s):  
Catalina Bolancé ◽  
Raluca Vernic

In actuarial mathematics, the claims of an insurance portfolio are often modeled using the collective risk model, which consists of a random number of claims of independent, identically distributed (i.i.d.) random variables (r.v.s) that represent cost per claim. To facilitate computations, there is a classical assumption of independence between the random number of such random variables (i.e., the claims frequency) and the random variables themselves (i.e., the claim severities). However, recent studies showed that, in practice, this assumption does not always hold, hence, introducing dependence in the collective model becomes a necessity. In this sense, one trend consists of assuming dependence between the number of claims and their average severity. Alternatively, we can consider heterogeneity between the individual cost of claims associated with a given number of claims. Using the Sarmanov distribution, in this paper we aim at introducing dependence between the number of claims and the individual claim severities. As marginal models, we use the Poisson and Negative Binomial (NB) distributions for the number of claims, and the Gamma and Lognormal distributions for the cost of claims. The maximum likelihood estimation of the proposed Sarmanov distribution is discussed. We present a numerical study using a real data set from a Spanish insurance portfolio.


2007 ◽  
Vol 37 (1) ◽  
pp. 93-112 ◽  
Author(s):  
Jun Cai ◽  
Ken Seng Tan

We propose practical solutions for the determination of optimal retentions in a stop-loss reinsurance. We develop two new optimization criteria for deriving the optimal retentions by, respectively, minimizing the value-at-risk (VaR) and the conditional tail expectation (CTE) of the total risks of an insurer. We establish necessary and sufficient conditions for the existence of the optimal retentions for two risk models: individual risk model and collective risk model. The resulting optimal solution of our optimization criterion has several important characteristics: (i) the optimal retention has a very simple analytic form; (ii) the optimal retention depends only on the assumed loss distribution and the reinsurer’s safety loading factor; (iii) the CTE criterion is more applicable than the VaR criterion in the sense that the optimal condition for the former is less restrictive than the latter; (iv) if optimal solutions exist, then both VaR- and CTE-based optimization criteria yield the same optimal retentions. In terms of applications, we extend the results to the individual risk models with dependent risks and use multivariate phase type distribution, multivariate Pareto distribution and multivariate Bernoulli distribution to illustrate the effect of dependence on optimal retentions. We also use the compound Poisson distribution and the compound negative binomial distribution to illustrate the optimal retentions in a collective risk model.


2010 ◽  
Vol 40 (1) ◽  
pp. 351-368 ◽  
Author(s):  
Xueyuan Wu ◽  
Shuanming Li

AbstractIn this paper, we aim to evaluate the distribution of the aggregate claims in the collective risk model. The claim count distribution is firstly assumed to belong to a generalised (a, b, 0) family. A matrix form recursive formula is then derived to evaluate the related compound distribution when individual claim amounts follow a discrete distribution on non-negative integers. The corresponding formula is also given for continuous individual claim amounts. Secondly, we pay particular attention to the recursive formula for compound phase-type distributions, since only certain types of discrete phase-type distributions belong to the generalised (a, b, 0) family. Similar recursive formulae are obtained for discrete and continuous individual claim amount distributions. Finally, numerical examples are presented for three counting distributions.


2011 ◽  
Vol 5 (2) ◽  
pp. 163-179 ◽  
Author(s):  
Kok Keng Siaw ◽  
Xueyuan Wu ◽  
David Pitt ◽  
Yan Wang

AbstractThis paper aims to evaluate the aggregate claims distribution under the collective risk model when the number of claims follows a so-called generalised (a, b, 1) family distribution. The definition of the generalised (a, b, 1) family of distributions is given first, then a simple matrix-form recursion for the compound generalised (a, b, 1) distributions is derived to calculate the aggregate claims distribution with discrete non-negative individual claims. Continuous individual claims are discussed as well and an integral equation of the aggregate claims distribution is developed. Moreover, a recursive formula for calculating the moments of aggregate claims is also obtained in this paper. With the recursive calculation framework being established, members that belong to the generalised (a, b, 1) family are discussed. As an illustration of potential applications of the proposed generalised (a, b, 1) distribution family on modelling insurance claim numbers, two numerical examples are given. The first example illustrates the calculation of the aggregate claims distribution using a matrix-form Poisson for claim frequency with logarithmic claim sizes. The second example is based on real data and illustrates maximum likelihood estimation for a set of distributions in the generalised (a, b, 1) family.


2007 ◽  
Vol 37 (01) ◽  
pp. 93-112 ◽  
Author(s):  
Jun Cai ◽  
Ken Seng Tan

We propose practical solutions for the determination of optimal retentions in a stop-loss reinsurance. We develop two new optimization criteria for deriving the optimal retentions by, respectively, minimizing the value-at-risk (VaR) and the conditional tail expectation (CTE) of the total risks of an insurer. We establish necessary and sufficient conditions for the existence of the optimal retentions for two risk models: individual risk model and collective risk model. The resulting optimal solution of our optimization criterion has several important characteristics: (i) the optimal retention has a very simple analytic form; (ii) the optimal retention depends only on the assumed loss distribution and the reinsurer’s safety loading factor; (iii) the CTE criterion is more applicable than the VaR criterion in the sense that the optimal condition for the former is less restrictive than the latter; (iv) if optimal solutions exist, then both VaR- and CTE-based optimization criteria yield the same optimal retentions. In terms of applications, we extend the results to the individual risk models with dependent risks and use multivariate phase type distribution, multivariate Pareto distribution and multivariate Bernoulli distribution to illustrate the effect of dependence on optimal retentions. We also use the compound Poisson distribution and the compound negative binomial distribution to illustrate the optimal retentions in a collective risk model.


Author(s):  
Rosy Oh ◽  
Himchan Jeong ◽  
Jae Youn Ahn ◽  
Emiliano A. Valdez

Sign in / Sign up

Export Citation Format

Share Document