EXISTENTIAL-IMPORT MATHEMATICS

2015 ◽  
Vol 21 (1) ◽  
pp. 1-14 ◽  
Author(s):  
JOHN CORCORAN ◽  
HASSAN MASOUD

AbstractFirst-order logic has limited existential import: the universalized conditional ∀x [S(x) → P(x)] implies its corresponding existentialized conjunction ∃x [S(x) & P(x)] in some but not all cases. We prove the Existential-Import Equivalence:∀x [S(x) → P(x)] implies ∃x [S(x) & P(x)] iff ∃x S(x) is logically true.The antecedent S(x) of the universalized conditional alone determines whether the universalized conditional has existential import: implies its corresponding existentialized conjunction.A predicate is a formula having only x free. An existential-import predicate Q(x) is one whose existentialization, ∃x Q(x), is logically true; otherwise, Q(x) is existential-import-free or simply import-free. Existential-import predicates are also said to be import-carrying.How widespread is existential import? How widespread are import-carrying predicates in themselves or in comparison to import-free predicates? To answer, let L be any first-order language with any interpretation INT in any [sc. nonempty] universe U. A subset S of U is definable in L under INT iff for some predicate Q(x) in L, S is the truth-set of Q(x) under INT. S is import-carrying definable iff S is the truth-set of an import-carrying predicate. S is import-free definable iff S is the truth-set of an import-free predicate.Existential-Importance Theorem: Let L, INT, and U be arbitrary. Every nonempty definable subset of U is both import-carrying definable and import-free definable.Import-carrying predicates are quite abundant, and no less so than import-free predicates. Existential-import implications hold as widely as they fail.A particular conclusion cannot be validly drawn from a universal premise, or from any number of universal premises.—Lewis-Langford, 1932, p. 62.

Author(s):  
Jonathan Mai

English distinguishes between singular quantifiers like "a donkey" and plural quantifiers like "some donkeys". Pluralists hold that plural quantifiers range in an unusual, irreducibly plural, way over common objects, namely individuals from first-order domains and not over set-like objects. The favoured framework of pluralism is plural first-order logic, PFO, an interpreted first-order language that is capable of expressing plural quantification. Pluralists argue for their position by claiming that the standard formal theory based on PFO is both ontologically neutral and really logic. These properties are supposed to yield many important applications concerning second-order logic and set theory that alternative theories supposedly cannot deliver. I will show that there are serious reasons for rejecting at least the claim of ontological innocence. Doubt about innocence arises on account of the fact that, when properly spelled out, the PFO-semantics for plural quantifiers is committed to set-like objects. The correctness of my worries presupposes the principle that for every plurality there is a coextensive set. Pluralists might reply that this principle leads straight to paradox. However, as I will argue, the true culprit of the paradox is the assumption that every definite condition determines a plurality.


2018 ◽  
Vol 16 (3) ◽  
pp. 5-15
Author(s):  
V. V. Tselishchev

The application of game-theoretic semantics for first-order logic is based on a certain kind of semantic assumptions, directly related to the asymmetry of the definition of truth and lies as the winning strategies of the Verifier (Abelard) and the Counterfeiter (Eloise). This asymmetry becomes apparent when applying GTS to IFL. The legitimacy of applying GTS when it is transferred to IFL is based on the adequacy of GTS for FOL. But this circumstance is not a reason to believe that one can hope for the same adequacy in the case of IFL. Then the question arises if GTS is a natural semantics for IFL. Apparently, the intuitive understanding of negation in natural language can be explicated in formal languages in various ways, and the result of an incomplete grasp of the concept in these languages can be considered a certain kind of anomalies, in view of the apparent simplicity of the explicated concept. Comparison of the theoretical-model and game theoretic semantics in application to two kinds of language – the first-order language and friendly-independent logic – allows to discover the causes of the anomaly and outline ways to overcome it.


1982 ◽  
Vol 47 (1) ◽  
pp. 187-190 ◽  
Author(s):  
Carl Morgenstern

In this note we investigate an extension of Peano arithmetic which arises from adjoining generalized quantifiers to first-order logic. Markwald [2] first studied the definability properties of L1, the language of first-order arithmetic, L, with the additional quantifer Ux which denotes “there are infinitely many x such that…. Note that Ux is the same thing as the Keisler quantifier Qx in the ℵ0 interpretation.We consider L2, which is L together with the ℵ0 interpretation of the Magidor-Malitz quantifier Q2xy which denotes “there is an infinite set X such that for distinct x, y ∈ X …”. In [1] Magidor and Malitz presented an axiom system for languages which arise from adding Q2 to a first-order language. They proved that the axioms are valid in every regular interpretation, and, assuming ◊ω1, that the axioms are complete in the ℵ1 interpretation.If we let denote Peano arithmetic in L2 with induction for L2 formulas and the Magidor-Malitz axioms as logical axioms, we show that in we can give a truth definition for first-order Peano arithmetic, . Consequently we can prove in that is Πn sound for every n, thus in we can prove the Paris-Harrington combinatorial principle and the higher-order analogues due to Schlipf.


1999 ◽  
Vol 64 (3) ◽  
pp. 1028-1036 ◽  
Author(s):  
C. Butz ◽  
I. Moerdijk

In this paper, we will present a definability theorem for first order logic. This theorem is very easy to state, and its proof only uses elementary tools. To explain the theorem, let us first observe that if M is a model of a theory T in a language , then, clearly, any definable subset S ⊂ M (i.e., a subset S = {a ∣ M ⊨ φ(a)} defined by some formula φ) is invariant under all automorphisms of M. The same is of course true for subsets of Mn defined by formulas with n free variables.Our theorem states that, if one allows Boolean valued models, the converse holds. More precisely, for any theory T we will construct a Boolean valued model M, in which precisely the T -provable formulas hold, and in which every (Boolean valued) subset which is invariant under all automorphisms of M is definable by a formula .Our presentation is entirely selfcontained, and only requires familiarity with the most elementary properties of model theory. In particular, we have added a first section in which we review the basic definitions concerning Boolean valued models.


1997 ◽  
Vol 4 (3) ◽  
Author(s):  
Carsten Butz ◽  
Ieke Moerdijk

In this paper, we will present a definability theorem for first order logic.<br />This theorem is very easy to state, and its proof only uses elementary tools. To explain the theorem, let us first observe that if M is a model of a theory T in a language L, then, clearly, any definable subset S M (i.e., a subset S = {a | M |= phi(a)} defined by some formula phi) is invariant under all<br />automorphisms of M. The same is of course true for subsets of M" defined<br />by formulas with n free variables.<br /> Our theorem states that, if one allows Boolean valued models, the converse holds. More precisely, for any theory T we will construct a Boolean valued model M, in which precisely the T-provable formulas hold, and in which every (Boolean valued) subset which is invariant under all automorphisms of M is definable by a formula of L.<br />Our presentation is entirely selfcontained, and only requires familiarity<br />with the most elementary properties of model theory. In particular, we have added a first section in which we review the basic definitions concerning<br />Boolean valued models.<br />The Boolean algebra used in the construction of the model will be presented concretely as the algebra of closed and open subsets of a topological space X naturally associated with the theory T. The construction of this space is closely related to the one in [1]. In fact, one of the results in that paper could be interpreted as a definability theorem for infinitary logic, using topological rather than Boolean valued models.


1998 ◽  
Vol 4 (3) ◽  
pp. 303-337 ◽  
Author(s):  
Jaakko Hintikka

§1. The mission of axiomatic set theory. What is set theory needed for in the foundations of mathematics? Why cannot we transact whatever foundational business we have to transact in terms of our ordinary logic without resorting to set theory? There are many possible answers, but most of them are likely to be variations of the same theme. The core area of ordinary logic is by a fairly common consent the received first-order logic. Why cannot it take care of itself? What is it that it cannot do? A large part of every answer is probably that first-order logic cannot handle its own model theory and other metatheory. For instance, a first-order language does not allow the codification of the most important semantical concept, viz. the notion of truth, for that language in that language itself, as shown already in Tarski (1935). In view of such negative results it is generally thought that one of the most important missions of set theory is to provide the wherewithal for a model theory of logic. For instance Gregory H. Moore (1994, p. 635) asserts in his encyclopedia article “Logic and set theory” thatSet theory influenced logic, both through its semantics, by expanding the possible models of various theories and by the formal definition of a model; and through its syntax, by allowing for logical languages in which formulas can be infinite in length or in which the number of symbols is uncountable.


2009 ◽  
Vol 19 (12) ◽  
pp. 3091-3099 ◽  
Author(s):  
Gui-Hong XU ◽  
Jian ZHANG

Author(s):  
Tim Button ◽  
Sean Walsh

Chapters 6-12 are driven by questions about the ability to pin down mathematical entities and to articulate mathematical concepts. This chapter is driven by similar questions about the ability to pin down the semantic frameworks of language. It transpires that there are not just non-standard models, but non-standard ways of doing model theory itself. In more detail: whilst we normally outline a two-valued semantics which makes sentences True or False in a model, the inference rules for first-order logic are compatible with a four-valued semantics; or a semantics with countably many values; or what-have-you. The appropriate level of generality here is that of a Boolean-valued model, which we introduce. And the plurality of possible semantic values gives rise to perhaps the ‘deepest’ level of indeterminacy questions: How can humans pin down the semantic framework for their languages? We consider three different ways for inferentialists to respond to this question.


2020 ◽  
Author(s):  
Michał Walicki

Abstract Graph normal form, introduced earlier for propositional logic, is shown to be a normal form also for first-order logic. It allows to view syntax of theories as digraphs, while their semantics as kernels of these digraphs. Graphs are particularly well suited for studying circularity, and we provide some general means for verifying that circular or apparently circular extensions are conservative. Traditional syntactic means of ensuring conservativity, like definitional extensions or positive occurrences guaranteeing exsitence of fixed points, emerge as special cases.


Sign in / Sign up

Export Citation Format

Share Document