Using Bayesian techniques for data pooling in regional payroll forecasting (1990)

Author(s):  
James P. LeSage ◽  
Michael Magura
2016 ◽  
Author(s):  
Kathy Gray ◽  
Robert Keane ◽  
Ryan Karpisz ◽  
Alyssa Pedersen ◽  
Rick Brown ◽  
...  

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Jack Y. Araz ◽  
Michael Spannowsky

Abstract Ensemble learning is a technique where multiple component learners are combined through a protocol. We propose an Ensemble Neural Network (ENN) that uses the combined latent-feature space of multiple neural network classifiers to improve the representation of the network hypothesis. We apply this approach to construct an ENN from Convolutional and Recurrent Neural Networks to discriminate top-quark jets from QCD jets. Such ENN provides the flexibility to improve the classification beyond simple prediction combining methods by linking different sources of error correlations, hence improving the representation between data and hypothesis. In combination with Bayesian techniques, we show that it can reduce epistemic uncertainties and the entropy of the hypothesis by simultaneously exploiting various kinematic correlations of the system, which also makes the network less susceptible to a limitation in training sample size.


2003 ◽  
Vol 15 (9) ◽  
pp. 2227-2254 ◽  
Author(s):  
Wei Chu ◽  
S. Sathiya Keerthi ◽  
Chong Jin Ong

This letter describes Bayesian techniques for support vector classification. In particular, we propose a novel differentiable loss function, called the trigonometric loss function, which has the desirable characteristic of natural normalization in the likelihood function, and then follow standard gaussian processes techniques to set up a Bayesian framework. In this framework, Bayesian inference is used to implement model adaptation, while keeping the merits of support vector classifier, such as sparseness and convex programming. This differs from standard gaussian processes for classification. Moreover, we put forward class probability in making predictions. Experimental results on benchmark data sets indicate the usefulness of this approach.


2015 ◽  
Vol 14 (02) ◽  
pp. 1550017
Author(s):  
Pichid Kittisuwan

The application of image processing in industry has shown remarkable success over the last decade, for example, in security and telecommunication systems. The denoising of natural image corrupted by Gaussian noise is a classical problem in image processing. So, image denoising is an indispensable step during image processing. This paper is concerned with dual-tree complex wavelet-based image denoising using Bayesian techniques. One of the cruxes of the Bayesian image denoising algorithms is to estimate the statistical parameter of the image. Here, we employ maximum a posteriori (MAP) estimation to calculate local observed variance with generalized Gamma density prior for local observed variance and Laplacian or Gaussian distribution for noisy wavelet coefficients. Evidently, our selection of prior distribution is motivated by efficient and flexible properties of generalized Gamma density. The experimental results show that the proposed method yields good denoising results.


Geophysics ◽  
2013 ◽  
Vol 78 (3) ◽  
pp. V87-V100 ◽  
Author(s):  
Caglar Yardim ◽  
Peter Gerstoft ◽  
Zoi-Heleni Michalopoulou

Sequential Bayesian techniques enable tracking of evolving geophysical parameters via sequential observations. They provide a formulation in which the geophysical parameters that characterize dynamic, nonstationary processes are continuously estimated as new data become available. This is done by using prediction from previous estimates of geophysical parameters, updates stemming from physical and statistical models that relate seismic measurements to the unknown geophysical parameters. In addition, these techniques provide the evolving uncertainty in the estimates in the form of posterior probability density functions. In addition to the particle filters (PFs), extended, unscented, and ensemble Kalman filters (EnKFs) were evaluated. The filters were compared via reflector and nonvolcanic tremor tracking examples. Because there are numerous geophysical problems in which the environmental model itself is not known or evolves with time, the concept of model selection and its filtering implementation were introduced. A multiple model PF was then used to track an unknown number of reflectors from seismic interferometry data. We found that when the equations that define the geophysical problem are strongly nonlinear, a PF was needed. The PF outperformed all Kalman filter variants, especially in low signal-to-noise ratio tremor cases. However, PFs are computationally expensive. The EnKF is most appropriate when the number of parameters is large. Because each technique is ideal under different conditions, they complement each other and provide a useful set of techniques for solving sequential geophysical inversion problems.


Epidemiology ◽  
2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Teresa J. Filshtein ◽  
Xiang Li ◽  
Scott C. Zimmerman ◽  
Sarah F. Ackley ◽  
M. Maria Glymour ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document