Bayesian techniques for surface fuel loading estimation

2016 ◽  
Author(s):  
Kathy Gray ◽  
Robert Keane ◽  
Ryan Karpisz ◽  
Alyssa Pedersen ◽  
Rick Brown ◽  
...  
Author(s):  
Ryan Karpisz ◽  
Alyssa Pedersen ◽  
Taylor Russell ◽  
Rick Brown ◽  
Kathy Gray

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Jack Y. Araz ◽  
Michael Spannowsky

Abstract Ensemble learning is a technique where multiple component learners are combined through a protocol. We propose an Ensemble Neural Network (ENN) that uses the combined latent-feature space of multiple neural network classifiers to improve the representation of the network hypothesis. We apply this approach to construct an ENN from Convolutional and Recurrent Neural Networks to discriminate top-quark jets from QCD jets. Such ENN provides the flexibility to improve the classification beyond simple prediction combining methods by linking different sources of error correlations, hence improving the representation between data and hypothesis. In combination with Bayesian techniques, we show that it can reduce epistemic uncertainties and the entropy of the hypothesis by simultaneously exploiting various kinematic correlations of the system, which also makes the network less susceptible to a limitation in training sample size.


2021 ◽  
Vol 13 (8) ◽  
pp. 1561
Author(s):  
Chinsu Lin ◽  
Siao-En Ma ◽  
Li-Ping Huang ◽  
Chung-I Chen ◽  
Pei-Ting Lin ◽  
...  

Surface fuel loading is a key factor in controlling wildfires and planning sustainable forest management. Spatially explicit maps of surface fuel loading can highlight the risks of a forest fire. Geospatial information is critical in enabling careful use of deliberate fire setting and also helps to minimize the possibility of heat conduction over forest lands. In contrast to lidar sensing and/or optical sensing based methods, an approach of integrating in-situ fuel inventory data, geospatial interpolation techniques, and multiple linear regression methods provides an alternative approach to surface fuel load estimation and mapping over mountainous forests. Using a stratified random sampling based inventory and cokriging analysis, surface fuel loading data of 120 plots distributed over four kinds of fuel types were collected in order to develop a total surface fuel loading model (lntSFL-BioTopo model) and a fine surface fuel model (lnfSFL-BioTopo model) for generating tSFL and fSFL maps. Results showed that the combination of topographic parameters such as slope, aspect, and their cross products and the fuel types such as pine stand, non-pine conifer stand, broadleaf stand, and conifer–broadleaf mixed stand was able to appropriately describe the changes in surface fuel loads over a forest with diverse terrain morphology. Based on a cross-validation method, the estimation of tSFL and fSFL of the study site had an RMSE of 3.476 tons/ha and 3.384 tons/ha, respectively. In contrast to the average loading of all inventory plots, the estimation for tSFL and fSFL had a relative error of 38% (PRMSE). The reciprocal of estimation bias of both SFL-BioTopo models tended to be an exponential growth function of the amount of surface fuel load, indicating that the estimation accuracy of the proposed method is likely to be improved with further study. In the regression modeling, a natural logarithm transformation of the surface fuel loading prevented the outcome of negative estimates and thus improved the estimation. Based on the results, this paper defined a minimum sampling unit (MSU) as the area for collecting surface fuels for interpolation using a cokriging model. Allocating the MSUs at the boundary and center of a plot improved surface fuel load prediction and mapping.


2003 ◽  
Vol 15 (9) ◽  
pp. 2227-2254 ◽  
Author(s):  
Wei Chu ◽  
S. Sathiya Keerthi ◽  
Chong Jin Ong

This letter describes Bayesian techniques for support vector classification. In particular, we propose a novel differentiable loss function, called the trigonometric loss function, which has the desirable characteristic of natural normalization in the likelihood function, and then follow standard gaussian processes techniques to set up a Bayesian framework. In this framework, Bayesian inference is used to implement model adaptation, while keeping the merits of support vector classifier, such as sparseness and convex programming. This differs from standard gaussian processes for classification. Moreover, we put forward class probability in making predictions. Experimental results on benchmark data sets indicate the usefulness of this approach.


2015 ◽  
Vol 14 (02) ◽  
pp. 1550017
Author(s):  
Pichid Kittisuwan

The application of image processing in industry has shown remarkable success over the last decade, for example, in security and telecommunication systems. The denoising of natural image corrupted by Gaussian noise is a classical problem in image processing. So, image denoising is an indispensable step during image processing. This paper is concerned with dual-tree complex wavelet-based image denoising using Bayesian techniques. One of the cruxes of the Bayesian image denoising algorithms is to estimate the statistical parameter of the image. Here, we employ maximum a posteriori (MAP) estimation to calculate local observed variance with generalized Gamma density prior for local observed variance and Laplacian or Gaussian distribution for noisy wavelet coefficients. Evidently, our selection of prior distribution is motivated by efficient and flexible properties of generalized Gamma density. The experimental results show that the proposed method yields good denoising results.


Sign in / Sign up

Export Citation Format

Share Document