Lithic Core Reduction Techniques: Modeling Expected Diversity

2009 ◽  
pp. 317-336 ◽  
Author(s):  
Nathan B. Goodale ◽  
Ian Kuijt ◽  
Shane J. MacFarlan ◽  
Curtis Osterhoudt ◽  
Bill Finlayson ◽  
...  
Author(s):  
Tsedendorj Bolorbat ◽  
Cao Jian En ◽  
Song Guo Dong ◽  
Batsuuri Ankhbayar ◽  
Guunii Lkhundev ◽  
...  

In this article, we report artefacts found at the valley of Tsagaan Turuut River in the Khangai Mountain ranges in Central Mongolia. The artefacts were identified based upon core morphology, tool types and retouch. Regarding the core reduction techniques, single striking platform and single reduction platform cores are dominant. Although the tools on flake blanks predominant, tools such as points and knives with massive blades also occur. Side scraper, point, borer, combination tool, and borers are types that are less represented within the collection. This tool collection is highly similar to several IUP and EUP sites (Chikhen-2; Tolbor-4, 15 and 16) in Mongolia in terms of its reduction techniques and tool morphology. On a larger scale, it is similar to those of Early Upper Paleolithic sites in Trans-Baikal and Altai Mountains in Russia and North China.


2011 ◽  
Vol 40 ◽  
pp. 701-728 ◽  
Author(s):  
A. Cimatti ◽  
A. Griggio ◽  
R. Sebastiani

The problem of finding small unsatisfiable cores for SAT formulas has recently received a lot of interest, mostly for its applications in formal verification. However, propositional logic is often not expressive enough for representing many interesting verification problems, which can be more naturally addressed in the framework of Satisfiability Modulo Theories, SMT. Surprisingly, the problem of finding unsatisfiable cores in SMT has received very little attention in the literature. In this paper we present a novel approach to this problem, called the Lemma-Lifting approach. The main idea is to combine an SMT solver with an external propositional core extractor. The SMT solver produces the theory lemmas found during the search, dynamically lifting the suitable amount of theory information to the Boolean level. The core extractor is then called on the Boolean abstraction of the original SMT problem and of the theory lemmas. This results in an unsatisfiable core for the original SMT problem, once the remaining theory lemmas are removed. The approach is conceptually interesting, and has several advantages in practice. In fact, it is extremely simple to implement and to update, and it can be interfaced with every propositional core extractor in a plug-and-play manner, so as to benefit for free of all unsat-core reduction techniques which have been or will be made available. We have evaluated our algorithm with a very extensive empirical test on SMT-LIB benchmarks, which confirms the validity and potential of this approach.


1978 ◽  
Vol 48 ◽  
pp. 389-390 ◽  
Author(s):  
Chr. de Vegt

AbstractReduction techniques as applied to astrometric data material tend to split up traditionally into at least two different classes according to the observational technique used, namely transit circle observations and photographic observations. Although it is not realized fully in practice at present, the application of a blockadjustment technique for all kind of catalogue reductions is suggested. The term blockadjustment shall denote in this context the common adjustment of the principal unknowns which are the positions, proper motions and certain reduction parameters modelling the systematic properties of the observational process. Especially for old epoch catalogue data we frequently meet the situation that no independent detailed information on the telescope properties and other instrumental parameters, describing for example the measuring process, is available from special calibration observations or measurements; therefore the adjustment process should be highly self-calibrating, that means: all necessary information has to be extracted from the catalogue data themselves. Successful applications of this concept have been made already in the field of aerial photogrammetry.


2021 ◽  
Author(s):  
Noopur Joshi ◽  
Noah Becker ◽  
Roger Tull ◽  
James Kenna ◽  
Christopher Adams ◽  
...  

2014 ◽  
Vol 3 (3) ◽  
pp. 28-32
Author(s):  
C. Mekala ◽  
◽  
P. Saranya ◽  
V. Sathya Narayanan ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document