Presynaptic adaptive responses to constitutive versus adult pharmacologic inhibition of serotonin uptake

Author(s):  
Beth A. Luellen ◽  
Tracy L. Gilman ◽  
Anne Milasincic Andrews
1974 ◽  
Vol 32 (02/03) ◽  
pp. 405-416 ◽  
Author(s):  
M. R Hardeman ◽  
Carina J L. Heynens

SummaryStorage experiments were performed at 4°, 25° and 37° C with platelet-rich plasma under sterile conditions. In some experiments also the effect of storing platelets at 4° C in whole blood was investigated.Before, during and after three days of storage, the platelets were tested at 37° C for their serotonin uptake and response to hypotonic shock. In addition some glycolytic intermediates were determined.A fair correlation was noticed between the serotonin uptake and hypotonic shock experiments. Both parameters were best maintained at 25° C. Also platelet counting, performed after the storage period, indicated 25° C as the best storage temperature. Determination of glycolytic intermediates did not justify any conclusion regarding the optimal storage temperature. Of the various anticoagulants studied, ACD and heparin gave the best results as to the serotonin uptake and hypotonic shock response, either with fresh or stored platelets. The use of EDTA resulted in the lowest activity, especially after storage.The results of these storage experiments in vitro, correspond well with those in vivo reported in the literature.


2019 ◽  
Author(s):  
Joe Butler ◽  
Samuel Ngabo ◽  
Marcus Missal

Complex biological systems build up temporal expectations to facilitate adaptive responses to environmental events, in order to minimise costs associated with incorrect responses, and maximise the benefits of correct responses. In the lab, this is clearly demonstrated in tasks which show faster response times when the period between warning (S1) and target stimulus (S2) on the previous trial was short and slower when the previous trial foreperiod was long. The mechanisms driving such higher order effects in temporal preparation paradigms are still under debate, with key theories proposing that either i) the foreperiod leads to automatic modulation of the arousal system which influences responses on the subsequent trial, or ii) that exposure to a foreperiod results in the creation of a memory trace which is used to guide responses on the subsequent trial. Here we provide data which extends the evidence base for the memory accounts, by showing that previous foreperiod exposures are cumulative with reaction times shortening after repeated exposures; whilst also demonstrate that the higher order effects associated with a foreperiod remain active for several trials.


Sign in / Sign up

Export Citation Format

Share Document