Nutrients, elemental accumulation, and mineral cycling

2010 ◽  
pp. 234-251 ◽  
Author(s):  
T. H. Nash
2017 ◽  
Vol 10 (1) ◽  
pp. 70-81 ◽  
Author(s):  
Muhammad Afzal Rizvi ◽  
Syed Abid Ali ◽  
Iqra Munir ◽  
Kousar Yasmeen ◽  
Rubina Abid ◽  
...  

Aim: Quinoa is a popular source of protein, minerals and alternative to traditional grains. The objective of this study is to introduce the Quinoa in the semi-arid zone of Sindh province of Pakistan. Method: A variety of NARC-9 from the agricultural Punjab province was cultivated and subjected to analyze the growth, morphological characters of the varieties obtained, saponin, protein and the elemental composition viz. Cd, Cu, Fe, K, Na, Pb, and Zn. Result: The result demonstrated the optimum growth and no disease were found in the experimental area. At least three major varieties of quinoa were obtained. Seed morphological data of these three quinoa cultivars were collected. The average saponin levels were quite reasonable. Overall proteins band pattern revealed very high polymorphism in quinoa cultivars and the results were also in good agreement with earlier studies. Conclusion: All quinoa cultivars of Madinat al-Hikmah showed high concentrations of albumin than globulin concentrations (i.e. 48-52% and 24-27%, respectively) as compared to control seeds from market that had similar concentrations of the two fractions i.e. 35.58% and 37.68%, respectively. Likewise, low concentrations of prolamin 14-16% and glutelin 11-12% compared to control seeds 13% rank our crop much better quality than the imported one in the market. The trend of elemental accumulation was followed as K >Na >Fe >Zn >Cu >Pb >Cd, while for comparison it was Na >K >Zn >Fe >Cu >Pb >Cd >Pb for wheat grown under similar conditions. Traditional grains together make a major contribution to the total nutritional element intake of the average Pakistani citizen through diet, not only because of large amounts consumed, but also in part by suitable levels of their proteins and elemental up take for good health. Thus the successful cultivation of quinoa in the semi-arid zone of Sindh will certainly prove beneficial.


1982 ◽  
Vol 95 (4) ◽  
pp. 359-373 ◽  
Author(s):  
Makoto Kimura ◽  
Masaki Funakoshi ◽  
Shinpei Sudo ◽  
Takehiro Masuzawa ◽  
Toshie Nakamura ◽  
...  

2016 ◽  
Author(s):  
Alexandra Asaro ◽  
Greg Ziegler ◽  
Cathrine Ziyomo ◽  
Owen A. Hoekenga ◽  
Brian P. Dilkes ◽  
...  

AbstractPlants obtain soil-resident elements that support growth and metabolism via water-mediated flow facilitated by transpiration and active transport processes. The availability of elements in the environment interact with the genetic capacity of organisms to modulate element uptake through plastic adaptive responses, such as homeostasis. These interactions should cause the elemental contents of plants to vary such that the effects of genetic polymorphisms influencing elemental accumulation will be dramatically dependent on the environment in which the plant is grown. To investigate genotype by environment interactions underlying elemental accumulation, we analyzed levels of elements in maize kernels of the Intermated B73 x Mo17 (IBM) recombinant inbred population grown in 10 different environments spanning a total of six locations and five different years. In analyses conducted separately for each environment, we identified a total of 79 quantitative trait loci controlling seed elemental accumulation. While a set of these QTL were found in multiple environments, the majority were specific to a single environment, suggesting the presence of genetic by environment interactions. To specifically identify and quantify QTL by environment interactions (QEIs), we implemented two methods: linear modeling with environmental covariates and QTL analysis on trait differences between growouts. With these approaches, we found several instances of QEI, indicating that elemental profiles are highly heritable, interrelated, and responsive to the environment.Author SummaryPlants take up elements from the soil, a process that is highly regulated by the plant’s genome. To investigate how maize alters its elemental uptake in response to different environments, we analyzed the kernel elemental content of a population derived from a cross grown 10 different times in six locations. We found that environment had a profound effect on which genetic loci were important for elemental accumulation in the kernel. Our results suggest that to have a full understanding of elemental accumulation in maize kernels and other food crops, we will need to understand the interactions identified here at the level of the genes and the environmental variables that contribute to loading essential nutrients into seeds.


2019 ◽  
Vol 13 (8) ◽  
pp. 1891-1898 ◽  
Author(s):  
Rebecca A. Bunn ◽  
Dylan T. Simpson ◽  
Lorinda S. Bullington ◽  
Ylva Lekberg ◽  
David P. Janos

Sign in / Sign up

Export Citation Format

Share Document