An Original Theory or New Hypothesis of the Universe, Founded upon the Laws of Nature

2014 ◽  
Author(s):  
Thomas Wright

The concept of a law of nature, while familiar, is deeply puzzling. Theorists such as Descartes think a divine being governs the universe according to the laws which follow from that being’s own nature. Newton detaches the concept from theology and is agnostic about the ontology underlying the laws of nature. Some later philosophers treat laws as summaries of events or tools for understanding and explanation, or identify the laws with principles and equations fundamental to scientific theories. In the first part of this volume, essays from leading historians of philosophy identify central questions: are laws independent of the things they govern, or do they emanate from the powers of bodies? Are the laws responsible for the patterns we see in nature, or should they be collapsed into those patterns? In the second part, contributors at the forefront of current debate evaluate the role of laws in contemporary Best System, perspectival, Kantian, and powers- or mechanisms-based approaches. These essays take up pressing questions about whether the laws of nature can be consistent with contingency, whether laws are based on the invariants of scientific theories, and how to deal with exceptions to laws. These twelve essays, published here for the first time, will be required reading for anyone interested in metaphysics, philosophy of science, and the histories of these disciplines.


2021 ◽  
Vol 48 (1) ◽  
pp. 45-53
Author(s):  
Paweł Matyaszewski

The authors of the revolutionary calendar, in particular Gilbert Romme and Fabre d’Églantine not only want to put the past behind by implicating a new time and new order but also try to prove the relation between history and nature using the example of the events of the Revolution and their compliance with the laws of the universe. They introduce an innovative nomenclature in order to specify the names of particular days and months but they do not change the natural four-season model of division. The goal of the presented idea is to enrich the natural cycle with a new content expressing the spirit and the objectives of the Republic while following the laws of nature.


2018 ◽  
pp. 1-4
Author(s):  
Alvaro De Rújula

Beauty and simplicity, a scientist’s view. A first encounter with Einstein’s equations of General Relativity, space-time, and Gravity. Ockham’s Razor. Why the Universe is the way it is: The origin of the laws of Nature.


2020 ◽  
pp. 58-66
Author(s):  
Nicholas Mee

Kepler sought patterns and symmetry in the laws of nature. In 1611 he wrote a booklet, De Niva Sexangular (The Six-Cornered Snowflake), in which he attempted to explain the structure of familiar symmetrical objects. Almost 300 years before the existence of atoms was definitively established, he concluded that the symmetrical shape of crystals is due to the regular arrangement of the atoms of which they are formed. He also investigated the structure of geometrical objects such as the Platonic solids and the regular stellated polyhedra, known today as the Kepler–Poinsot polyhedra. Like Kepler, today’s theoretical physicists are seeking patterns and symmetries that explain the universe. According to string theorists, the universe includes six extra hidden spatial dimensions, forming a shape known as a Calabi–Yau manifold. No-one knows whether string theory will revolutionize physics like Kepler’s brilliant insights, or whether it will turn out to be a red herring.


Icarus ◽  
1974 ◽  
Vol 22 (1) ◽  
pp. 119
Author(s):  
Owen Gingerich
Keyword(s):  

1953 ◽  
Vol 18 (2) ◽  
pp. 145-167 ◽  
Author(s):  
J. C. Shepherdson

In this third and last paper on inner models we consider some of the inherent limitations of the method of using inner models of the type defined in 1.2 for the proof of consistency results for the particular system of set theory under consideration. Roughly speaking this limitation may be described by saying that practically no further consistency results can be obtained by the construction of models satisfying the conditions of theorem 1.5, i.e., conditions 1.31, 1.32, 1.33, 1.51, viz.:This applies in particular to the ‘complete models’ defined in 1.4. Before going on to a precise statement of these limitations we shall consider now the theorem on which they depend. This is concerned with a particular type of complete model examples of which we call “proper complete models”; they are those complete models which are essentially interior to the universe, those whose classes are sets of the universe constituting a class thereof, i.e., those for which the following proposition is true:The main theorem of this paper is that the statement that there are no models of this kind can be expressed formally in the same way as the axioms A, B, C and furthermore it can be proved that if the axiom system A, B, C is consistent then so is the system consisting of axioms A, B, C, plus this new hypothesis that there exist no proper complete models. When combined with the axiom ‘V = L’ introduced by Gödel in (1) this new hypothesis yields a system in which any normal complete model which exists has for its universal class V, the universal class of the original system.


Sign in / Sign up

Export Citation Format

Share Document