Physics as an Art Form

2018 ◽  
pp. 1-4
Author(s):  
Alvaro De Rújula

Beauty and simplicity, a scientist’s view. A first encounter with Einstein’s equations of General Relativity, space-time, and Gravity. Ockham’s Razor. Why the Universe is the way it is: The origin of the laws of Nature.

1990 ◽  
Vol 68 (9) ◽  
pp. 824-826
Author(s):  
Paul S. Wesson

The standard cosmological solutions of Einstein's equations of general relativity describe a fluid that is homogeneous and isotropic in density and pressure. These solutions, often called the Friedmann–Robertson–Walker solutions, are believed to be good descriptions of the universe at the present time. But early on, processes connected with particle physics and quantum field theory may have caused localized inhomogeneities, and recently some new kinds of solution of Einstein's equations have been found, which may describe such regions. In one solution being studied by Wesson and Ponce de Leon (Phys. Rev. D: Part. Fields, 39, 420 (1989)), the density is still uniform but the pressure is nonuniform about a centre. The mass is given by a relation that looks like the familiar Newtonian relation m = (4/3)πR3ρ. However, the solution has other properties that are quite strange (e.g. a region of negative pressure and a kind of dipolar geometry). It is not known if solutions like this are merely mathematical curiosities or imply something about the behaviour of real matter in extreme situations.


2000 ◽  
Vol 15 (08) ◽  
pp. 531-539 ◽  
Author(s):  
SANTIAGO E. PEREZ BERGLIAFFA

Einstein's equations for a (4 + n)-dimensional inhomogeneous space–time are presented, and a special family of solutions is exhibited for an arbitrary n. The solutions depend on two arbitrary functions of time. The time development of a particular member of this family is studied. This solution exhibits a singularity at t = 0 and dynamical compactification of the n dimensions. It is shown that the behavior of the system in the four-dimensional(i.e. post-compactification) phase is constrained by the way in which the compactified dimensions are stabilized. The fluid that generates this solution is analyzed by means of the energy conditions.


Metaphysics ◽  
2020 ◽  
pp. 82-93
Author(s):  
V. G Krechet

In this article, within the framework of general relativity, the possible effect of the gravitational interaction of Dirac nonlinear spinor fields on the evolution of the Universe, on the formation of astrophysical objects and on the formation of the geometry of the local space-time of elementary particles with spin ħ / 2 is considered.


Author(s):  
Xiao-Song Wang

J. C. Maxwell, B. Riemann and H. Poincar$\acute{e}$ have proposed the idea that all microscopic particles are sink flows in a fluidic aether. Following this research program, a previous theory of gravitation based on a mechanical model of vacuum and a sink flow model of particles is generalized by methods of special relativistic continuum mechanics. In inertial reference frames, we construct a tensorial potential which satisfies the wave equation. Inspired by the equation of motion of a test particle, a definition of a metric tensor of a Riemannian spacetime is introduced. Applying Fock's theorem, generalized Einstein's equations in inertial systems are derived based on some assumptions. These equations reduce to Einstein's equations in case of weak field in harmonic reference frames. In some special non-inertial reference frames, generalized Einstein's equations are derived based on some assumptions. If the field is weak and the reference frame is quasi-inertial, these generalized Einstein's equations reduce to Einstein's equations. Thus, this theory may also explains all the experiments which support the theory of general relativity. There exists some differences between this theory and Einstein's theory of general relativity.


2013 ◽  
Vol 28 (10) ◽  
pp. 1350039 ◽  
Author(s):  
S. C. ULHOA ◽  
A. F. SANTOS ◽  
R. G. G. AMORIM

In this paper, we work in the context of Teleparallelism Equivalent to General Relativity (TEGR) in order to construct the energy–momentum flux for Gödel-type solutions of Einstein's equations. We use an stationary observer, which is settled by the tetrad choice, to obtain the gravitational pressure for each direction of space in cartesian coordinates. Then, we write down the total pressure for each direction in terms of the pressure of the fluid, thus we are able to identify the role of the gravitational pressure.


2015 ◽  
Vol 30 (13) ◽  
pp. 1550068
Author(s):  
L. Clavelli ◽  
Gary R. Goldstein

We discuss various space–time metrics which are compatible with Einstein's equations and a previously suggested cosmology with a finite total mass.1 In this alternative cosmology, the matter density was postulated to be a spatial delta function at the time of the big bang thereafter diffusing outward with constant total mass. This proposal explores a departure from standard assumptions that the big bang occurred everywhere at once or was just one of an infinite number of previous and later transitions.


2015 ◽  
Vol 12 (10) ◽  
pp. 1550103 ◽  
Author(s):  
Rajesh Kumar ◽  
S. K. Srivastava ◽  
V. C. Srivastava

In General Relativity (GR), the analysis of electric and magnetic Weyl tensors has been studied by various authors. The present study deals with cylindrically symmetric relativistic fluids in GR characterized by the vanishing of magnetic Weyl tensor-purely electric (PE) fields. A very new assumption has been adapted to solve the Einstein's equations and the obtained solution is shearing at all. We signified the importance of PE fields in the context of expansion scalar, energy density, shear and acceleration.


Author(s):  
Xiao-Song Wang

When solving the Einstein's equations for an isolated system of masses, V. Fock introduces harmonic reference frame and obtains an unambiguous solution. Further, he concludes that there exists a harmonic reference frame which is determined uniquely apart from a Lorentz transformation if suitable supplementary conditions are imposed. It is known that wave equations keep the same form under Lorentz transformations. Thus, we speculate that Fock's special harmonic reference frames may have provided us a clue to derive the Einstein's equations in some special class of non-inertial reference frames. Following this clue, generalized Einstein's equations in some special non-inertial reference frames are derived based on the theory of vacuum mechanics. If the field is weak and the reference frame is quasi-inertial, these generalized Einstein's equations reduce to Einstein's equations. Thus, this theory may also explain all the experiments which support the theory of general relativity. There exist some differences between this theory and the theory of general relativity.


Sign in / Sign up

Export Citation Format

Share Document