Author(s):  
Alexander Shamailovich Avshalumov

Since the creation of GR and subsequent works in cosmology, the question of the curvature of space in the Universe is considered one of the most important and debated to this day. This is evident, because the curvature of space depends whether the Universe expands, contracts or is static. These discussions allowed the author to propose a paradoxical idea: simultaneous existence in the Universe of three interconnected space-times (positive, negative and zero curvature) and on this basis, to develop a theory in which each space-time plays its own role and develops in a strict accordance with its sign of curvature. The three space-time model of the structure of the Universe, proposed by the author, allows to solve many fundamental problems of modern cosmology and theoretical physics and creates the basis for building a unified physical theory (including one that unites GR and quantum physics).


Nanoscale ◽  
2017 ◽  
Vol 9 (37) ◽  
pp. 14208-14214 ◽  
Author(s):  
Zhongwei Zhang ◽  
Jie Chen ◽  
Baowen Li

From the mathematic category of surface Gaussian curvature, carbon allotropes can be classified into three types: zero curvature, positive curvature, and negative curvature.


2018 ◽  
Vol 33 (40) ◽  
pp. 1850240
Author(s):  
Babur M. Mirza

We present here a general relativistic mechanism for accelerated cosmic expansion and the Hubble’s parameter. It is shown that spacetime vorticity coupled to the magnetic field density in galaxies causes the galaxies to recede from one another at a rate equal to the Hubble’s constant. We therefore predict an oscillatory universe, with zero curvature, without assuming violation of Newtonian gravity at large distances or invoking dark energy/dark matter hypotheses. The value of the Hubble’s constant, along with the scale of expansion, as well as the high isotropy of CMB radiation are deduced from the model.


1994 ◽  
Vol 09 (03) ◽  
pp. 383-398 ◽  
Author(s):  
FRANÇOIS GIERES ◽  
STEFAN THEISEN

Starting from superdifferential operators in an N=1 superfield formulation, we present a systematic prescription for the derivation of classical N=1 and N=2 super W algebras by imposing a zero-curvature condition on the connection of the corresponding first-order system. We illustrate the procedure on the first nontrivial example (beyond the N=1 superconformal algebra) and also comment on the relation with the Gelfand-Dickey construction of W algebras.


2018 ◽  
Vol 33 (35) ◽  
pp. 1850209 ◽  
Author(s):  
H. Wajahat A. Riaz ◽  
Mahmood ul Hassan

A noncommutative negative order AKNS (NC-AKNS(-1)) equation is studied. To show the integrability of the system, we present explicitly the underlying integrable structure such as Lax pair, zero-curvature condition, an infinite sequence of conserved densities, Darboux transformation (DT) and quasideterminant soliton solutions. Moreover, the NC-AKNS(-1) equation is compared with its commutative counterpart not only on the level of nonlinear evolution equation but also for the explicit solutions.


2015 ◽  
Vol 94 ◽  
pp. 185-198 ◽  
Author(s):  
D. Catalano Ferraioli ◽  
L.A. de Oliveira Silva
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document