zero curvature representation
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 0)

Author(s):  
Oleksiy O. Vakhnenko ◽  
Andriy P. Verchenko

The nonlinear dynamics of coupled P T -symmetric excitations and Toda-like vibrations on a one-dimensional lattice are studied analytically and elucidated graphically. The nonlinear exciton-phonon system as the whole is shown to be integrable in the Lax sense inasmuch as it admits the zero-curvature representation supported by the auxiliary linear problem of third order. Inspired by this fact, we have developed in detail the Darboux–Bäcklund integration technique appropriate to generate a higher-rank crop solution by dressing a lower-rank (supposedly known) seed solution. In the framework of this approach, we have found a rather non-trivial four-component analytical solution exhibiting the crossover between the monopole and dipole regimes in the spatial distribution of intra-site excitations. This effect is inseparable from the pronounced mutual influence between the interacting subsystems in the form of specific nonlinear superposition of two essentially distinct types of travelling waves. We have established the criterion of monopole-dipole transition based upon the interplay between the localization parameter of Toda mode and the inter-subsystem coupling parameter.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ning Zhang ◽  
Xi-Xiang Xu

Starting from a novel discrete spectral problem, a family of integrable differential-difference equations is derived through discrete zero curvature equation. And then, tri-Hamiltonian structure of the whole family is established by the discrete trace identity. It is shown that the obtained family is Liouville-integrable. Next, a nonisospectral integrable family associated with the discrete spectral problem is constructed through nonisospectral discrete zero curvature representation. Finally, Lie algebra of isospectral and nonisospectral vector fields is deduced.


2021 ◽  
Vol 66 (7) ◽  
pp. 601
Author(s):  
O.O. Vakhnenko

The article suggests the nonlinear lattice system of three dynamical subsystems coupled both in their potential and kinetic parts. Due to its essentially multicomponent structure the system is capable to model nonlinear dynamical excitations on regular quasi-one-dimensional lattices of various physical origins. The system admits a clear Hamiltonian formulation with the standard Poisson structure. The alternative Lagrangian formulation of system’s dynamics is also presented. The set of dynamical equations is integrable in the Lax sense, inasmuch as it possesses a zero-curvature representation. Though the relevant auxiliary linear problem involves a spectral third-order operator, we have managed to develop an appropriate two-fold Darboux–Backlund dressing technique allowing one to generate the nontrivial crop solution embracing all three coupled subsystems in a rather unusual way.


2021 ◽  
Vol 59 ◽  
pp. 47-65
Author(s):  
Paul Bracken

General classes of non-linear sigma models originating from a specified action are developed and studied. Models can be grouped and considered within a single mathematical structure this way. The geometrical properties of these models and the theories they describe are developed in detail. The zero curvature representation of the equations of motion are found. Those representations which have a spectral parameter are of importance here. Some new models with Lax pairs which depend on a spectral parameter are found. Some particular classes of solutions are worked out and discussed.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Xi-Xiang Xu ◽  
Meng Xu

An integrable family of the different-difference equations is derived from a discrete matrix spectral problem by the discrete zero curvature representation. Hamiltonian structure of obtained integrable family is established. Liouville integrability for the obtained family of discrete Hamiltonian systems is proved. Based on the gauge transformation between the Lax pair, a Darboux-Bäcklund transformation of the first nonlinear different-difference equation in obtained family is deduced. Using this Darboux-Bäcklund transformation, an exact solution is presented.


2018 ◽  
Vol 33 (15) ◽  
pp. 1850086 ◽  
Author(s):  
H. Wajahat A. Riaz ◽  
Mahmood ul Hassan

The multi-component noncommutative coupled dispersionless (NC-CD) system is presented. It has been shown that multi-component NC-CD system is integrable in the sense of exhibiting its Lax pair, zero-curvature representation, Darboux transformation and multisoliton solutions. Explicit expressions of multisoliton solutions of this noncommutative system have been computed and results have been compared with their commutative counterparts.


2018 ◽  
Vol 15 (03) ◽  
pp. 1850040 ◽  
Author(s):  
Jinbing Chen

In this paper, the backward and forward Neumann type systems are generalized to deduce the quasi-periodic solutions for a negative-order integrable system of 2-component KdV equation. The 2-component negative-order KdV (2-nKdV) equation is depicted as the zero-curvature representation of two spectral problems. It follows from a symmetric constraint that the 2-nKdV equation is reduced to a pair of backward and forward Neumann type systems, where the involutive solutions of Neumann type systems yield the finite parametric solutions of 2-nKdV equation. The negative-order Novikov equation is given to specify a finite-dimensional invariant subspace for the 2-nKdV flow. With a spectral curve given by the Lax matrix, the 2-nKdV flow is linearized on the Jacobi variety of a Riemann surface, which leads to the quasi-periodic solutions of 2-nKdV equation by using the Riemann-Jacobi inversion.


Sign in / Sign up

Export Citation Format

Share Document