The Norm Residue Theorem and the Quillen-Lichtenbaum Conjecture

Author(s):  
Manfred Kolster
Keyword(s):  
2019 ◽  
Author(s):  
Christian Haesemeyer ◽  
Charles A. Weibel

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Claudio Quadrelli

Abstract Let 𝑝 be a prime. We produce two new families of pro-𝑝 groups which are not realizable as absolute Galois groups of fields. To prove this, we use the 1-smoothness property of absolute Galois pro-𝑝 groups. Moreover, we show in these families, one has several pro-𝑝 groups which may not be ruled out as absolute Galois groups employing the quadraticity of Galois cohomology (a consequence of the norm residue theorem), or the vanishing of Massey products in Galois cohomology.


2018 ◽  
Vol 17 (06) ◽  
pp. 1850101
Author(s):  
Fernando Pablos Romo

The aim of this work is to offer a general theory of reciprocity laws for symbols on arbitrary vector spaces and to show that classical explicit reciprocity laws are particular cases of this theory (sum of valuations on a complete curve, Residue Theorem, Weil Reciprocity Law and the Reciprocity Law for the Hilbert Norm Residue Symbol). Moreover, several reciprocity laws introduced over the past few years by D. V. Osipov, A. N. Parshin, I. Horozov, I. Horozov — M. Kerr and the author — together with D. Hernández Serrano — can also be deduced from this general expression.


2019 ◽  
Author(s):  
Christian Haesemeyer ◽  
Charles A. Weibel

Author(s):  
Christian Haesemeyer ◽  
Charles A. Weibel

This book presents the complete proof of the Bloch–Kato conjecture and several related conjectures of Beilinson and Lichtenbaum in algebraic geometry. Brought together here for the first time, these conjectures describe the structure of étale cohomology and its relation to motivic cohomology and Chow groups. Although the proof relies on the work of several people, it is credited primarily to Vladimir Voevodsky. The book draws on a multitude of published and unpublished sources to explain the large-scale structure of Voevodsky's proof and introduces the key figures behind its development. It proceeds to describe the highly innovative geometric constructions of Markus Rost, including the construction of norm varieties, which play a crucial role in the proof. It then addresses symmetric powers of motives and motivic cohomology operations. The book unites various components of the proof that until now were scattered across many sources of varying accessibility, often with differing hypotheses, definitions, and language.


2021 ◽  
Vol 24 (6) ◽  
pp. 1797-1830
Author(s):  
Chenkuan Li

Abstract The objective of this paper is, for the first time, to extend the fractional Laplacian (−△) s u(x) over the space Ck (Rn ) (which contains S(Rn ) as a proper subspace) for all s > 0 and s ≠ 1, 2, …, based on the normalization in distribution theory, Pizzetti’s formula and surface integrals in Rn . We further present two theorems showing that our extended fractional Laplacian is continuous at the end points 1, 2, … . Two illustrative examples are provided to demonstrate computational techniques for obtaining the fractional Laplacian using special functions, Cauchy’s residue theorem and integral identities. An application to defining the Riesz derivative in the classical sense at odd numbers is also considered at the end.


Sign in / Sign up

Export Citation Format

Share Document