scholarly journals Ratner’s property for special flows over irrational rotations under functions of bounded variation

2013 ◽  
Vol 35 (3) ◽  
pp. 915-934 ◽  
Author(s):  
ADAM KANIGOWSKI

AbstractWe consider special flows over the rotation by an irrational$\alpha $under the roof functions of bounded variation without continuous, singular part in the Lebesgue decomposition and sum of jumps not equal to zero. We show that all such flows are weakly mixing. Under the additional assumption that$\alpha $has bounded partial quotients, we study the weak Ratner property. We establish this property whenever an additional condition (stable under sufficiently small perturbations) on the set of jumps is satisfied. While it is a classical result that the flows under consideration are not mixing, one more condition on the set of jumps turns out to be sufficient to obtain the absence of partial rigidity, hence mild mixing of such flows.

2021 ◽  
Vol 27 (2) ◽  
Author(s):  
Elena E. Berdysheva ◽  
Nira Dyn ◽  
Elza Farkhi ◽  
Alona Mokhov

AbstractWe introduce and investigate an adaptation of Fourier series to set-valued functions (multifunctions, SVFs) of bounded variation. In our approach we define an analogue of the partial sums of the Fourier series with the help of the Dirichlet kernel using the newly defined weighted metric integral. We derive error bounds for these approximants. As a consequence, we prove that the sequence of the partial sums converges pointwisely in the Hausdorff metric to the values of the approximated set-valued function at its points of continuity, or to a certain set described in terms of the metric selections of the approximated multifunction at a point of discontinuity. Our error bounds are obtained with the help of the new notions of one-sided local moduli and quasi-moduli of continuity which we discuss more generally for functions with values in metric spaces.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 990
Author(s):  
Silvestru Sever Dragomir

In this paper, we provide several bounds for the modulus of the complex Čebyšev functional. Applications to the trapezoid and mid-point inequalities, that are symmetric inequalities, are also provided.


Author(s):  
Emilio Acerbi ◽  
Domenico Mucci

We consider the total curvature of graphs of curves in high-codimension Euclidean space. We introduce the corresponding relaxed energy functional and prove an explicit representation formula. In the case of continuous Cartesian curves, i.e. of graphs cu of continuous functions u on an interval, we show that the relaxed energy is finite if and only if the curve cu has bounded variation and finite total curvature. In this case, moreover, the total curvature does not depend on the Cantor part of the derivative of u. We treat the wider class of graphs of one-dimensional functions of bounded variation, and we prove that the relaxed energy is given by the sum of the length and total curvature of the new curve obtained by closing the holes in cu generated by jumps of u with vertical segments.


2018 ◽  
Vol 68 (5) ◽  
pp. 1097-1112 ◽  
Author(s):  
Feng Liu

Abstract In this paper we investigate the regularity properties of one-sided fractional maximal functions, both in continuous case and in discrete case. We prove that the one-sided fractional maximal operators $ \mathcal{M}_{\beta}^{+} $ and $ \mathcal{M}_{\beta}^{-} $ map $ W^{1,p}(\mathbb{R}) $ into $ W^{1,q}(\mathbb{R}) $ with 1 <p <∞, 0≤β<1/p and q=p/(1-pβ), boundedly and continuously. In addition, we also obtain the sharp bounds and continuity for the discrete one-sided fractional maximal operators $ M_{\beta}^{+} $ and $ M_{\beta}^{-} $ from $ \ell^{1}(\mathbb{Z}) $ to $ {\rm BV}(\mathbb{Z}) $. Here $ {\rm BV}(\mathbb{Z}) $ denotes the set of all functions of bounded variation defined on ℤ. The results we obtained represent significant and natural extensions of what was known previously.


2003 ◽  
Vol 2003 (31) ◽  
pp. 2003-2009 ◽  
Author(s):  
Vijay Gupta ◽  
Niraj Kumar

Guo (1988) introduced the integral modification of Meyer-Kö nig and Zeller operatorsMˆnand studied the rate of convergence for functions of bounded variation. Gupta (1995) gave the sharp estimate for the operatorsMˆn. Zeng (1998) gave the exact bound and claimed to improve the results of Guo and Gupta, but there is a major mistake in the paper of Zeng. In the present note, we give the correct estimate for the rate of convergence on bounded variation functions.


2015 ◽  
Vol 08 (04) ◽  
pp. 1550069 ◽  
Author(s):  
S. S. Dragomir

In this paper, some general two parameters perturbed Ostrowski type inequalities for functions of bounded variation are established.


Sign in / Sign up

Export Citation Format

Share Document