Topologically mixing tiling of generated by a generalized substitution

2021 ◽  
pp. 1-25
Author(s):  
TYLER WHITE

Abstract This paper presents sufficient conditions for a substitution tiling dynamical system of $\mathbb {R}^2$ , generated by a generalized substitution on three letters, to be topologically mixing. These conditions are shown to hold on a large class of tiling substitutions originally presented by Kenyon in 1996. This problem was suggested by Boris Solomyak, and many of the techniques that are used in this paper are based on the work by Kenyon, Sadun, and Solomyak [Topological mixing for substitutions on two letters. Ergod. Th. & Dynam. Sys.25(6) (2005), 1919–1934]. They studied one-dimensional tiling dynamical systems generated by substitutions on two letters and provided similar conditions sufficient to ensure that one-dimensional substitution tiling dynamical systems are topologically mixing. If a tiling dynamical system of $\mathbb {R}^2$ satisfies our conditions (and thus is topologically mixing), we can construct additional topologically mixing tiling dynamical systems of $\mathbb {R}^2$ . By considering the stepped surface constructed from a tiling $T_\sigma $ , we can get a new tiling of $\mathbb {R}^2$ by projecting the surface orthogonally onto an irrational plane through the origin.

2017 ◽  
Vol 39 (3) ◽  
pp. 604-619 ◽  
Author(s):  
SIDDHARTHA BHATTACHARYA ◽  
TULLIO CECCHERINI-SILBERSTEIN ◽  
MICHEL COORNAERT

Let$X$be a compact metrizable group and let$\unicode[STIX]{x1D6E4}$be a countable group acting on$X$by continuous group automorphisms. We give sufficient conditions under which the dynamical system$(X,\unicode[STIX]{x1D6E4})$is surjunctive, i.e. every injective continuous map$\unicode[STIX]{x1D70F}:X\rightarrow X$commuting with the action of$\unicode[STIX]{x1D6E4}$is surjective.


2005 ◽  
Vol 15 (04) ◽  
pp. 1267-1284 ◽  
Author(s):  
V. AVRUTIN ◽  
M. SCHANZ

In this work a one-dimensional piecewise-smooth dynamical system, representing a Poincaré return map for dynamical systems of the Lorenz type, is investigated. The system shows a bifurcation scenario similar to the classical period-doubling one, but which is influenced by so-called border collision phenomena and denoted as border collision period-doubling bifurcation scenario. This scenario is formed by a sequence of pairs of bifurcations, whereby each pair consists of a border collision bifurcation and a pitchfork bifurcation. The mechanism leading to this scenario and its characteristic properties, like symmetry-breaking and symmetry-recovering as well as emergence of coexisting attractors, are investigated.


1990 ◽  
Vol 10 (3) ◽  
pp. 451-462 ◽  
Author(s):  
C. D. Cutler

AbstractIn this paper we make precise the relationship between local or pointwise dimension and the dimension structure of Borel probability measures on metric spaces. Sufficient conditions for exact-dimensionality of the stationary ergodic distributions associated with a dynamical system are obtained. A counterexample is provided to show that ergodicity alone is not sufficient to guarantee exactdimensionality even in the case of continuous maps or flows.


1989 ◽  
Vol 9 (4) ◽  
pp. 751-758 ◽  
Author(s):  
A. M. Blokh ◽  
M. Yu. Lyubich

AbstractWe prove that an arbitrary one dimensional smooth dynamical system with non-degenerate critical points has no wandering intervals.


10.37236/2213 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
Stephen M. Shea

A labeling of a graph is a function from the vertex set of the graph to some finite set.  Certain dynamical systems (such as topological Markov shifts) can be defined by directed graphs.  In these instances, a labeling of the graph defines a continuous, shift-commuting factor of the dynamical system.  We find sufficient conditions on the labeling to imply classification results for the factor dynamical system.  We define the topological entropy of a (directed or undirected) graph and its labelings in a way that is analogous to the definition of topological entropy for a shift space in symbolic dynamics.  We show, for example, if $G$ is a perfect graph, all proper $\chi(G)$-colorings of $G$ have the same entropy, where $\chi(G)$ is the chromatic number of $G$.


2019 ◽  
Vol 20 (01) ◽  
pp. 2050002
Author(s):  
C. Cuny ◽  
J. Dedecker ◽  
A. Korepanov ◽  
F. Merlevède

For a large class of quickly mixing dynamical systems, we prove that the error in the almost sure approximation with a Brownian motion is of order [Formula: see text] with [Formula: see text]. Specifically, we consider nonuniformly expanding maps with exponential and stretched exponential decay of correlations, with one-dimensional Hölder continuous observables.


1989 ◽  
Vol 9 (4) ◽  
pp. 737-749 ◽  
Author(s):  
M. Yu. Lyubich

AbstractIt is proved that an arbitrary one dimensional dynamical system with negative Schwarzian derivative and non-degenerate critical points has no wandering intervals. This result implies a rather complete view of the dynamics of such a system. In particular, every minimal topological attractor is either a limit cycle, or a one dimensional manifold with boundary, or a solenoid. The orbit of a generic point tends to some minimal attractor.


Author(s):  
Yaroslav V. Bazaikin ◽  
Anton S. Galaev

Abstract Following Losik’s approach to Gelfand’s formal geometry, certain characteristic classes for codimension-one foliations coming from the Gelfand-Fuchs cohomology are considered. Sufficient conditions for nontriviality in terms of dynamical properties of generators of the holonomy groups are found. The nontriviality for the Reeb foliations is shown; this is in contrast with some classical theorems on the Godbillon-Vey class; for example, the Mizutani-Morita-Tsuboi theorem about triviality of the Godbillon-Vey class of foliations almost without holonomy is not true for the classes under consideration. It is shown that the considered classes are trivial for a large class of foliations without holonomy. The question of triviality is related to ergodic theory of dynamical systems on the circle and to the problem of smooth conjugacy of local diffeomorphisms. Certain classes are obstructions for the existence of transverse affine and projective connections.


2010 ◽  
Vol 10 (01) ◽  
pp. 53-75 ◽  
Author(s):  
YONG MOO CHUNG

We study the multifractal analysis for smooth dynamical systems in dimension one. It is given a characterization of the Hausdorff dimension of the level set obtained from the Birkhoff averages of a continuous function by the local dimensions of hyperbolic measures for a topologically mixing C2 map modeled by an abstract dynamical system. A characterization which corresponds to above is also given for the ergodic basins of invariant probability measures. And it is shown that the complement of the set of quasi-regular points carries full Hausdorff dimension.


2009 ◽  
Vol 2009 ◽  
pp. 1-9
Author(s):  
Nihal Ege ◽  
Khalik G. Guseinov

The boundedness of the motions of the dynamical system described by a differential inclusion with control vector is studied. It is assumed that the right-hand side of the differential inclusion is upper semicontinuous. Using positionally weakly invariant sets, sufficient conditions for boundedness of the motions of a dynamical system are given. These conditions have infinitesimal form and are expressed by the Hamiltonian of the dynamical system.


Sign in / Sign up

Export Citation Format

Share Document