scholarly journals -ADIC HODGE THEORY FOR RIGID-ANALYTIC VARIETIES

2013 ◽  
Vol 1 ◽  
Author(s):  
PETER SCHOLZE

AbstractWe give proofs of de Rham comparison isomorphisms for rigid-analytic varieties, with coefficients and in families. This relies on the theory of perfectoid spaces. Another new ingredient is the pro-étale site, which makes all constructions completely functorial.

2016 ◽  
Vol 4 ◽  
Author(s):  
PETER SCHOLZE

The author would like to make some changes to the previously published article [1] by correcting two definitions.


2018 ◽  
Vol 154 (4) ◽  
pp. 719-760
Author(s):  
Bryden Cais

We construct the $\unicode[STIX]{x1D6EC}$-adic crystalline and Dieudonné analogues of Hida’s ordinary $\unicode[STIX]{x1D6EC}$-adic étale cohomology, and employ integral $p$-adic Hodge theory to prove $\unicode[STIX]{x1D6EC}$-adic comparison isomorphisms between these cohomologies and the $\unicode[STIX]{x1D6EC}$-adic de Rham cohomology studied in Cais [The geometry of Hida families I:$\unicode[STIX]{x1D6EC}$-adic de Rham cohomology, Math. Ann. (2017), doi:10.1007/s00208-017-1608-1] as well as Hida’s $\unicode[STIX]{x1D6EC}$-adic étale cohomology. As applications of our work, we provide a ‘cohomological’ construction of the family of $(\unicode[STIX]{x1D711},\unicode[STIX]{x1D6E4})$-modules attached to Hida’s ordinary $\unicode[STIX]{x1D6EC}$-adic étale cohomology by Dee [$\unicode[STIX]{x1D6F7}$–$\unicode[STIX]{x1D6E4}$modules for families of Galois representations, J. Algebra 235 (2001), 636–664], and we give a new and purely geometric proof of Hida’s finiteness and control theorems. We also prove suitable $\unicode[STIX]{x1D6EC}$-adic duality theorems for each of the cohomologies we construct.


2013 ◽  
Vol 149 (3) ◽  
pp. 417-429 ◽  
Author(s):  
Giovanni Di Matteo

AbstractWe prove that if W and W′ are non-zero B-pairs whose tensor product is crystalline (or semi-stable or de Rham or Hodge–Tate), then there exists a character μ such that W(μ−1) and W′(μ) are crystalline (or semi-stable or de Rham or Hodge–Tate). We also prove that if W is a B-pair and if F is a Schur functor (for example Sym n or Λn) such that F(W) is crystalline (or semi-stable or de Rham or Hodge–Tate) and if the rank of W is sufficiently large, then there is a character μ such that W(μ−1) is crystalline (or semi-stable or de Rham or Hodge–Tate). In particular, these results apply to p-adic representations.


1998 ◽  
Vol 131 (622) ◽  
pp. 0-0 ◽  
Author(s):  
Luigi Fontana ◽  
Steven G. Krantz ◽  
Marco M. Peloso

2013 ◽  
Vol 28 (25) ◽  
pp. 1350122 ◽  
Author(s):  
SUDHAKER UPADHYAY ◽  
BHABANI PRASAD MANDAL

The nilpotent Becchi–Rouet–Stora–Tyutin (BRST), anti-BRST, dual-BRST and anti-dual-BRST symmetry transformations are constructed in the context of noncommutative (NC) 1-form as well as 2-form gauge theories. The corresponding Noether's charges for these symmetries on the Moyal plane are shown to satisfy the same algebra, as by the de Rham cohomological operators of differential geometry. The Hodge decomposition theorem on compact manifold is also studied. We show that noncommutative gauge theories are field theoretic models for Hodge theory.


Author(s):  
Pierre Albin ◽  
Eric Leichtnam ◽  
Rafe Mazzeo ◽  
Paolo Piazza

AbstractWe extend the study of the de Rham operator with ideal boundary conditions from the case of isolated conic singularities, as analyzed by Cheeger, to the case of arbitrary stratified pseudomanifolds. We introduce a class of ideal boundary conditions and the notion of mezzoperversity, which intermediates between the standard lower and upper middle perversities in intersection theory, as interpreted in this de Rham setting, and show that the de Rham operator with these boundary conditions is Fredholm and has compact resolvent. We also prove an isomorphism between the resulting Hodge and


Author(s):  
Peter Scholze ◽  
Jared Weinstein

This chapter looks at mixed-characteristic shtukas. Much of the theory of mixed-characteristic shtukas is motivated by the structures appearing in (integral) p-adic Hodge theory. The chapter assesses Drinfeld's shtukas and local shtukas. In the mixed characteristic setting, X will be replaced with Spa Zp. The test objects S will be drawn from Perf, the category of perfectoid spaces in characteristic p. For an object, a shtuka over S should be a vector bundle over an adic space, together with a Frobenius structure. The product is not meant to be taken literally (if so, one would just recover S), but rather it is to be interpreted as a fiber product over a deeper base. Motivated by this, the chapter then defines an analytic adic space and shows that its associated diamond is the appropriate product of sheaves on Perf.


Topology ◽  
1977 ◽  
Vol 16 (2) ◽  
pp. 157-165 ◽  
Author(s):  
Jozef Dodziuk
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document