scholarly journals DNR AND INCOMPARABLE TURING DEGREES

2016 ◽  
Vol 4 ◽  
Author(s):  
MINZHONG CAI ◽  
NOAM GREENBERG ◽  
MICHAEL MCINERNEY

We construct an increasing ${\it\omega}$-sequence $\langle \boldsymbol{a}_{n}\rangle$ of Turing degrees which forms an initial segment of the Turing degrees, and such that each $\boldsymbol{a}_{n+1}$ is diagonally nonrecursive relative to $\boldsymbol{a}_{n}$. It follows that the DNR principle of reverse mathematics does not imply the existence of Turing incomparable degrees.


2000 ◽  
Vol 65 (3) ◽  
pp. 1193-1203 ◽  
Author(s):  
P.D. Welch

AbstractWe characterise explicitly the decidable predicates on integers of Infinite Time Turing machines, in terms of admissibility theory and the constructible hierarchy. We do this by pinning down ζ, the least ordinal not the length of any eventual output of an Infinite Time Turing machine (halting or otherwise); using this the Infinite Time Turing Degrees are considered, and it is shown how the jump operator coincides with the production of mastercodes for the constructible hierarchy; further that the natural ordinals associated with the jump operator satisfy a Spector criterion, and correspond to the Lζ-stables. It also implies that the machines devised are “Σ2 Complete” amongst all such other possible machines. It is shown that least upper bounds of an “eventual jump” hierarchy exist on an initial segment.



2018 ◽  
Vol 83 (2) ◽  
pp. 817-828 ◽  
Author(s):  
ERIC P. ASTOR

AbstractIn a previous article, the author introduced the idea of intrinsic density—a restriction of asymptotic density to sets whose density is invariant under computable permutation. We prove that sets with well-defined intrinsic density (and particularly intrinsic density 0) exist only in Turing degrees that are either high (${\bf{a}}\prime { \ge _{\rm{T}}}\emptyset \prime \prime$) or compute a diagonally noncomputable function. By contrast, a classic construction of an immune set in every noncomputable degree actually yields a set with intrinsic lower density 0 in every noncomputable degree.We also show that the former result holds in the sense of reverse mathematics, in that (over RCA0) the existence of a dominating or diagonally noncomputable function is equivalent to the existence of a set with intrinsic density 0.



1990 ◽  
Vol 55 (1) ◽  
pp. 194-206 ◽  
Author(s):  
Robert S. Lubarsky

The program of reverse mathematics has usually been to find which parts of set theory, often used as a base for other mathematics, are actually necessary for some particular mathematical theory. In recent years, Slaman, Groszek, et al, have given the approach a new twist. The priority arguments of recursion theory do not naturally or necessarily lead to a foundation involving any set theory; rather, Peano Arithmetic (PA) in the language of arithmetic suffices. From this point, the appropriate subsystems to consider are fragments of PA with limited induction. A theorem in this area would then have the form that certain induction axioms are independent of, necessary for, or even equivalent to a theorem about the Turing degrees. (See, for examples, [C], [GS], [M], [MS], and [SW].)As go the integers so go the ordinals. One motivation of α-recursion theory (recursion on admissible ordinals) is to generalize classical recursion theory. Since induction in arithmetic is meant to capture the well-foundedness of ω, the corresponding axiom in set theory is foundation. So reverse mathematics, even in the context of a set theory (admissibility), can be changed by the influence of reverse recursion theory. We ask not which set existence axioms, but which foundation axioms, are necessary for the theorems of α-recursion theory.When working in the theory KP – Foundation Schema (hereinafter called KP−), one should really not call it α-recursion theory, which refers implicitly to the full set of axioms KP. Just as the name β-recursion theory refers to what would be α-recursion theory only it includes also inadmissible ordinals, we call the subject of study here γ-recursion theory. This answers a question by Sacks and S. Friedman, “What is γ-recursion theory?”



1974 ◽  
Vol 39 (2) ◽  
pp. 243-253 ◽  
Author(s):  
Joan D. Lukas ◽  
Hilary Putnam

The purpose of this paper is to show that arithmetically minimal systems of notations can be constructed which provide notations for all ramified analytical ordinals (all the ordinals in the minimum β-model for analysis). This is a much larger section of the second number class than the Church-Kleene constructive ordinals (although still only an initial segment of the ordinals). Arithmetic minimality means that if H is an “H-set” associated with an ordinal α in our system and H′ is an H-set associated with the same ordinal α in an arbitrary system of notations S, then H is arithmetical in H′. Thus the arithmetical degrees associated with ordinals in our system are as low as possible.In order to clarify the structure of degrees of unsolvability and, more generally, to gain a deeper insight into the power set of the integers, coarser but neater classifications than the structure of Turing degrees have been sought. Several hierarchies of sets of integers have been studied, each of which organizes a certain class of sets (or their degrees of unsolvability) into a well-ordering of levels with increasing complexity of nonrecursiveness appearing at each new level. The best known of these hierarchies is the Kleene hierarchy of arithmetical sets.



2004 ◽  
Vol 69 (2) ◽  
pp. 533-554 ◽  
Author(s):  
Rodney G. Downey ◽  
Evan J. Griffiths

Abstract.Schnorr randomness is a notion of algorithmic randomness for real numbers closely related to Martin-Löf randomness. After its initial development in the 1970s the notion received considerably less attention than Martin-Löf randomness, but recently interest has increased in a range of randomness concepts. In this article, we explore the properties of Schnorr random reals, and in particular the c.e. Schnorr random reals. We show that there are c.e. reals that are Schnorr random but not Martin-Löf random, and provide a new characterization of Schnorr random real numbers in terms of prefix-free machines. We prove that unlike Martin-Löf random c.e. reals, not all Schnorr random c.e. reals are Turing complete, though all are in high Turing degrees. We use the machine characterization to define a notion of “Schnorr reducibility” which allows us to calibrate the Schnorr complexity of reals. We define the class of “Schnorr trivial” reals, which are ones whose initial segment complexity is identical with the computable reals, and demonstrate that this class has non-computable members.



2004 ◽  
Vol 69 (2) ◽  
pp. 585-611 ◽  
Author(s):  
Sergey S. Goncharov ◽  
Valentina S. Harizanov ◽  
Julia F. Knight ◽  
Richard A. Shore

When bounds on complexity of some aspect of a structure are preserved under isomorphism, we refer to them as intrinsic. Here, building on work of Soskov [34], [33], we give syntactical conditions necessary and sufficient for a relation to be intrinsically on a structure. We consider some examples of computable structures and intrinsically relations R. We also consider a general family of examples of intrinsically relations arising in computable structures of maximum Scott rank.For three of the examples, the maximal well-ordered initial segment in a Harrison ordering, the superatomic part of a Harrison Boolean algebra, and the height-possessing part of a Harrison p-group, we show that the Turing degrees of images of the relation in computable copies of the structure are the same as the Turing degrees of paths through Kleene's . With this as motivation, we investigate the possible degrees of these paths. We show that there is a path in which ∅′ is not computable. In fact, there is one in which no noncomputable hyperarithmetical set is computable. There are paths that are Turing incomparable, or Turing incomparable over a given hyperarithmetical set. There is a pair of paths whose degrees form a minimal pair. However, there is no path of minimal degree.



2004 ◽  
Vol 69 (3) ◽  
pp. 914-922 ◽  
Author(s):  
Natasha L. Dobrinen ◽  
Stephen G. Simpson

Abstract.A Turing degree a is said to be almost everywhere dominating if, for almost all X ∈ 2ω with respect to the “fair coin” probability measure on 2ω, and for all g: ω → ω Turing reducible to X, there exists f: ω → ω of Turing degree a which dominates g. We study the problem of characterizing the almost everywhere dominating Turing degrees and other, similarly defined classes of Turing degrees. We relate this problem to some questions in the reverse mathematics of measure theory.



Sign in / Sign up

Export Citation Format

Share Document