Π11 relations and paths through

2004 ◽  
Vol 69 (2) ◽  
pp. 585-611 ◽  
Author(s):  
Sergey S. Goncharov ◽  
Valentina S. Harizanov ◽  
Julia F. Knight ◽  
Richard A. Shore

When bounds on complexity of some aspect of a structure are preserved under isomorphism, we refer to them as intrinsic. Here, building on work of Soskov [34], [33], we give syntactical conditions necessary and sufficient for a relation to be intrinsically on a structure. We consider some examples of computable structures and intrinsically relations R. We also consider a general family of examples of intrinsically relations arising in computable structures of maximum Scott rank.For three of the examples, the maximal well-ordered initial segment in a Harrison ordering, the superatomic part of a Harrison Boolean algebra, and the height-possessing part of a Harrison p-group, we show that the Turing degrees of images of the relation in computable copies of the structure are the same as the Turing degrees of paths through Kleene's . With this as motivation, we investigate the possible degrees of these paths. We show that there is a path in which ∅′ is not computable. In fact, there is one in which no noncomputable hyperarithmetical set is computable. There are paths that are Turing incomparable, or Turing incomparable over a given hyperarithmetical set. There is a pair of paths whose degrees form a minimal pair. However, there is no path of minimal degree.

1971 ◽  
Vol 36 (1) ◽  
pp. 66-78 ◽  
Author(s):  
Carl G. Jockusch ◽  
Robert I. Soare

A pair of sets (A0, A1) forms a minimal pair if A0 and A1 are nonrecursive, and if whenever a set B is recursive both in A0 and in A1 then B is recursive. C. E. M. Yates [8] and independently A. H. Lachlan [4] proved the existence of a minima] pair of recursively enumerable (r.e.) sets thereby establishing a conjecture of G. E. Sacks [6]. We simplify Lachlan's construction, and then generalize this result by constructing two disjoint pairs of r.e. sets (A0, B0) and (A1B1) such that if C0 separates (A0, A1 and C1 separates (B0, B1), then C0 and C1 form a minimal pair. (We say that C separates (A0, A1) if A0 ⊂ C and C ∩ = ∅.) The question arose in our study of (Turing) degrees of members of certain classes, where we proved the weaker result [2, Theorem 4.1] that the above pairs may be chosen so that C0 and C2 are merely Turing incomparable. (There we used a variation of the weaker result to improve a result of Scott and Tennenbaum that no complete extension of Peano arithmetic has minimal degree.)


2007 ◽  
Vol 72 (3) ◽  
pp. 1003-1018 ◽  
Author(s):  
John Chisholm ◽  
Jennifer Chubb ◽  
Valentina S. Harizanov ◽  
Denis R. Hirschfeldt ◽  
Carl G. Jockusch ◽  
...  

AbstractWe study the weak truth-table and truth-table degrees of the images of subsets of computable structures under isomorphisms between computable structures. In particular, we show that there is a low c.e. set that is not weak truth-table reducible to any initial segment of any scattered computable linear ordering. Countable subsets of 2ω and Kolmogorov complexity play a major role in the proof.


2000 ◽  
Vol 65 (3) ◽  
pp. 1193-1203 ◽  
Author(s):  
P.D. Welch

AbstractWe characterise explicitly the decidable predicates on integers of Infinite Time Turing machines, in terms of admissibility theory and the constructible hierarchy. We do this by pinning down ζ, the least ordinal not the length of any eventual output of an Infinite Time Turing machine (halting or otherwise); using this the Infinite Time Turing Degrees are considered, and it is shown how the jump operator coincides with the production of mastercodes for the constructible hierarchy; further that the natural ordinals associated with the jump operator satisfy a Spector criterion, and correspond to the Lζ-stables. It also implies that the machines devised are “Σ2 Complete” amongst all such other possible machines. It is shown that least upper bounds of an “eventual jump” hierarchy exist on an initial segment.


1971 ◽  
Vol 23 (2) ◽  
pp. 339-344
Author(s):  
Timothy Cramer

A Boolean algebra B is a retract of an algebra A if there exist homomorphisms ƒ: B → A and g: A → B such that gƒ is the identity map B. Some important properties of retracts of Boolean algebras are stated in [3, §§ 30, 31, 32]. If A and B are a-complete, and A is α-generated by B, Dwinger [1, p. 145, Theorem 2.4] proved necessary and sufficient conditions for the existence of an α-homomorphism g: A → B such that g is the identity map on B. Note that if a is not an infinite cardinal, B must be equal to A. The dual problem was treated by Wright [6]; he assumed that A and B are σ-algebras, and that g: A → B is a σ-homomorphism, and gave conditions for the existence of a homomorphism ƒ:B → A such that gƒ is the identity map.


2016 ◽  
Vol 4 ◽  
Author(s):  
MINZHONG CAI ◽  
NOAM GREENBERG ◽  
MICHAEL MCINERNEY

We construct an increasing ${\it\omega}$-sequence $\langle \boldsymbol{a}_{n}\rangle$ of Turing degrees which forms an initial segment of the Turing degrees, and such that each $\boldsymbol{a}_{n+1}$ is diagonally nonrecursive relative to $\boldsymbol{a}_{n}$. It follows that the DNR principle of reverse mathematics does not imply the existence of Turing incomparable degrees.


2006 ◽  
Vol 12 (2) ◽  
pp. 191-218 ◽  
Author(s):  
Wesley Calvert ◽  
Julia F. Knight

Classification is an important goal in many branches of mathematics. The idea is to describe the members of some class of mathematical objects, up to isomorphism or other important equivalence, in terms of relatively simple invariants. Where this is impossible, it is useful to have concrete results saying so. In model theory and descriptive set theory, there is a large body of work showing that certain classes of mathematical structures admit classification while others do not. In the present paper, we describe some recent work on classification in computable structure theory.Section 1 gives some background from model theory and descriptive set theory. From model theory, we give sample structure and non-structure theorems for classes that include structures of arbitrary cardinality. We also describe the notion of Scott rank, which is useful in the more restricted setting of countable structures. From descriptive set theory, we describe the basic Polish space of structures for a fixed countable language with fixed countable universe. We give sample structure and non-structure theorems based on the complexity of the isomorphism relation, and on Borel embeddings.Section 2 gives some background on computable structures. We describe three approaches to classification for these structures. The approaches are all equivalent. However, one approach, which involves calculating the complexity of the isomorphism relation, has turned out to be more productive than the others. Section 3 describes results on the isomorphism relation for a number of mathematically interesting classes—various kinds of groups and fields. In Section 4, we consider a setting similar to that in descriptive set theory. We describe an effective analogue of Borel embedding which allows us to make distinctions even among classes of finite structures. Section 5 gives results on computable structures of high Scott rank. Some of these results make use of computable embeddings. Finally, in Section 6, we mention some open problems and possible directions for future work.


2006 ◽  
Vol 128 (1) ◽  
pp. 15-36 ◽  
Author(s):  
Nataly Kanevsky ◽  
Nathan Dascal

β subunits (Cavβ) increase macroscopic currents of voltage-dependent Ca2+ channels (VDCC) by increasing surface expression and modulating their gating, causing a leftward shift in conductance–voltage (G-V) curve and increasing the maximal open probability, Po,max. In L-type Cav1.2 channels, the Cavβ-induced increase in macroscopic current crucially depends on the initial segment of the cytosolic NH2 terminus (NT) of the Cav1.2α (α1C) subunit. This segment, which we term the “NT inhibitory (NTI) module,” potently inhibits long-NT (cardiac) isoform of α1C that features an initial segment of 46 amino acid residues (aa); removal of NTI module greatly increases macroscopic currents. It is not known whether an NTI module exists in the short-NT (smooth muscle/brain type) α1C isoform with a 16-aa initial segment. We addressed this question, and the molecular mechanism of NTI module action, by expressing subunits of Cav1.2 in Xenopus oocytes. NT deletions and chimeras identified aa 1–20 of the long-NT as necessary and sufficient to perform NTI module functions. Coexpression of β2b subunit reproducibly modulated function and surface expression of α1C, despite the presence of measurable amounts of an endogenous Cavβ in Xenopus oocytes. Coexpressed β2b increased surface expression of α1C approximately twofold (as demonstrated by two independent immunohistochemical methods), shifted the G-V curve by ∼14 mV, and increased Po,max 2.8–3.8-fold. Neither the surface expression of the channel without Cavβ nor β2b-induced increase in surface expression or the shift in G-V curve depended on the presence of the NTI module. In contrast, the increase in Po,max was completely absent in the short-NT isoform and in mutants of long-NT α1C lacking the NTI module. We conclude that regulation of Po,max is a discrete, separable function of Cavβ. In Cav1.2, this action of Cavβ depends on NT of α1C and is α1C isoform specific.


1981 ◽  
Vol 46 (3) ◽  
pp. 572-594 ◽  
Author(s):  
J. B. Remmel

A Boolean algebra is recursive if B is a recursive subset of the natural numbers N and the operations ∧ (meet), ∨ (join), and ¬ (complement) are partial recursive. Given two Boolean algebras and , we write if is isomorphic to and if is recursively isomorphic to , that is, if there is a partial recursive function f: B1 → B2 which is an isomorphism from to . will denote the set of atoms of and () will denote the ideal generated by the atoms of .One of the main questions which motivated this paper is “To what extent does the classical isomorphism type of a recursive Boolean algebra restrict the possible recursion theoretic properties of ?” For example, it is easy to see that must be co-r.e. (i.e., N − is an r.e. set), but can be immune, not immune, cohesive, etc? It follows from a result of Goncharov [4] that there exist classical isomorphism types which contain recursive Boolean algebras but do not contain any recursive Boolean algebras such that is recursive. Thus the classical isomorphism can restrict the possible Turing degrees of , but what is the extent of this restriction? Another main question is “What is the recursion theoretic relationship between and () in a recursive Boolean algebra?” In our attempt to answer these questions, we were led to a wide variety of recursive isomorphism types which are contained in the classical isomorphism type of any recursive Boolean algebra with an infinite set of atoms.


2001 ◽  
Vol 66 (4) ◽  
pp. 1791-1802
Author(s):  
William C. Calhoun ◽  
Manuel Lerman

Abstract.We show that the lattice L20 is not embeddable into the lattice of ideals of computably enumerable Turing degrees (ℐ), We define a structure called a pseudolattice that generalizes the notion of a lattice, and show that there is a Π2 necessary and sufficient condition for embedding a finite pseudolattice into ℐ.


Sign in / Sign up

Export Citation Format

Share Document