An Approach to Higher Teichmüller Spaces for General Groups

2017 ◽  
Vol 2019 (16) ◽  
pp. 4899-4949 ◽  
Author(s):  
Ian Le

Abstract Let $S$ be a surface, $G$ a simply-connected semi-simple group, and $G'$ the associated adjoint form of the group. In Fock and Goncharov [4], the authors show that the moduli spaces of framed local systems $\mathcal{X}_{G',S}$ and $\mathcal{A}_{G,S}$ have the structure of cluster varieties when $G$ had type $A$. This was extended to classical groups in Le [12]. In this article, we give a method for constructing the cluster structure for general reductive groups $G$. The method depends on being able to carry out some explicit computations, and depends on some mild hypotheses, which we state, and which we believe hold in general. These hypotheses hold when $G$ has type $G_2,$ and therefore we are able to construct the cluster structure in this case. We also illustrate our approach by rederiving the cluster structure for $G$ of type $A$. Our goals are to give some heuristics for the approach taken in Le [12], point out the difficulties that arise for more general groups, and to record some useful calculations. Forthcoming work by Goncharov and Shen gives a different approach to constructing the cluster structure on $\mathcal{X}_{G',S}$ and $\mathcal{A}_{G,S}$. We hope that some of the ideas here complement their more comprehensive work.

2019 ◽  
Vol 7 ◽  
Author(s):  
IAN LE

Let $S$ be a surface, $G$ a simply connected classical group, and $G^{\prime }$ the associated adjoint form of the group. We show that the moduli spaces of framed local systems ${\mathcal{X}}_{G^{\prime },S}$ and ${\mathcal{A}}_{G,S}$, which were constructed by Fock and Goncharov [‘Moduli spaces of local systems and higher Teichmuller theory’, Publ. Math. Inst. Hautes Études Sci.103 (2006), 1–212], have the structure of cluster varieties, and thus together form a cluster ensemble. This simplifies some of the proofs in that paper, and also allows one to quantize higher Teichmuller space, which was previously only possible when $G$ was of type $A$.


2009 ◽  
Vol 61 (4) ◽  
pp. 950-960 ◽  
Author(s):  
Rudolf Tange

Abstract.Let G be a reductive connected linear algebraic group over an algebraically closed field of positive characteristic and let 𝔤 be its Lie algebra. First we extend a well-known result about the Picard group of a semi-simple group to reductive groups. Then we prove that if the derived group is simply connected and 𝔤 satisfies a mild condition, the algebra K[G]𝔤 of regular functions on G that are invariant under the action of 𝔤 derived from the conjugation action is a unique factorisation domain.


Author(s):  
Andrei Neguţ

Abstract We construct explicit elements $W_{ij}^k$ in (a completion of) the shifted quantum toroidal algebra of type $A$ and show that these elements act by 0 on the $K$-theory of moduli spaces of parabolic sheaves. We expect that the quotient of the shifted quantum toroidal algebra by the ideal generated by the elements $W_{ij}^k$ will be related to $q$-deformed $W$-algebras of type $A$ for arbitrary nilpotent, which would imply a $q$-deformed version of the Alday-Gaiotto-Tachikawa (AGT) correspondence between gauge theory with surface operators and conformal field theory.


1998 ◽  
Vol 09 (01) ◽  
pp. 1-45 ◽  
Author(s):  
JØRGEN ELLEGAARD ANDERSEN

Given a foliation F with closed leaves and with certain kinds of singularities on an oriented closed surface Σ, we construct in this paper an isotropic foliation on ℳ(Σ), the moduli space of flat G-connections, for G any compact simple simply connected Lie-group. We describe the infinitesimal structure of this isotropic foliation in terms of the basic cohomology with twisted coefficients of F. For any pair (F, g), where g is a singular metric on Σ compatible with F, we construct a new polarization on the symplectic manifold ℳ′(Σ), the open dense subset of smooth points of ℳ(Σ). We construct a sequence of complex structures on Σ, such that the corresponding complex structures on ℳ′(Σ) converges to the polarization associated to (F, g). In particular we see that the Jeffrey–Weitzman polarization on the SU(2)-moduli space is the limit of a sequence of complex structures induced from a degenerating family of complex structures on Σ, which converges to a point in the Thurston boundary of Teichmüller space of Σ. As a corollary of the above constructions, we establish a certain discontinuiuty at the Thurston boundary of Teichmüller space for the map from Teichmüller space to the space of polarizations on ℳ′(Σ). For any reducible finite order diffeomorphism of the surface, our constuction produces an invariant polarization on the moduli space.


2008 ◽  
Vol 144 (3) ◽  
pp. 721-733 ◽  
Author(s):  
Olivier Serman

AbstractWe prove that, given a smooth projective curve C of genus g≥2, the forgetful morphism $\mathcal {M}_{\mathbf {O}_r} \longrightarrow \mathcal {M}_{\mathbf {GL}_r}$ (respectively $\mathcal M_{\mathbf {Sp}_{2r}}\longrightarrow \mathcal M_{\mathbf {GL}_{2r}}$) from the moduli space of orthogonal (respectively symplectic) bundles to the moduli space of all vector bundles over C is an embedding. Our proof relies on an explicit description of a set of generators for the polynomial invariants on the representation space of a quiver under the action of a product of classical groups.


Author(s):  
Michael Wiemeler

Abstract Let $M$ be a simply connected spin manifold of dimension at least six, which admits a metric of positive scalar curvature. We show that the observer moduli space of positive scalar curvature metrics on $M$ has non-trivial higher homotopy groups. Moreover, denote by $\mathcal{M}_0^+(M)$ the moduli space of positive scalar curvature metrics on $M$ associated to the group of orientation-preserving diffeomorphisms of $M$. We show that if $M$ belongs to a certain class of manifolds that includes $(2n-2)$-connected $(4n-2)$-dimensional manifolds, then the fundamental group of $\mathcal{M}_0^+(M)$ is non-trivial.


2019 ◽  
Vol 72 (5) ◽  
pp. 1111-1187
Author(s):  
Xu Shen

AbstractWe enlarge the class of Rapoport–Zink spaces of Hodge type by modifying the centers of the associated $p$-adic reductive groups. Such obtained Rapoport–Zink spaces are said to be of abelian type. The class of Rapoport–Zink spaces of abelian type is strictly larger than the class of Rapoport–Zink spaces of Hodge type, but the two type spaces are closely related as having isomorphic connected components. The rigid analytic generic fibers of Rapoport–Zink spaces of abelian type can be viewed as moduli spaces of local $G$-shtukas in mixed characteristic in the sense of Scholze.We prove that Shimura varieties of abelian type can be uniformized by the associated Rapoport–Zink spaces of abelian type. We construct and study the Ekedahl–Oort stratifications for the special fibers of Rapoport–Zink spaces of abelian type. As an application, we deduce a Rapoport–Zink type uniformization for the supersingular locus of the moduli space of polarized K3 surfaces in mixed characteristic. Moreover, we show that the Artin invariants of supersingular K3 surfaces are related to some purely local invariants.


1997 ◽  
Vol 39 (1) ◽  
pp. 65-76
Author(s):  
Pablo Arés Gastesi

The deformation theory of nonorientable surfaces deals with the problem of studying parameter spaces for the different dianalytic structures that a surface can have. It is an extension of the classical theory of Teichmüller spaces of Riemann surfaces, and as such, it is quite rich. In this paper we study some basic properties of the Teichmüller spaces of non-orientable surfaces, whose parallels in the orientable situation are well known. More precisely, we prove an uniformization theorem, similar to the case of Riemann surfaces, which shows that a non-orientable compact surface can be represented as the quotient of a simply connected domain of the Riemann sphere, by a discrete group of Möbius and anti-Möbius transformation (mappings whose conjugates are Mobius transformations). This uniformization result allows us to give explicit examples of Teichmüller spaces of non-orientable surfaces, as subsets of deformation spaces of orientable surfaces. We also prove two isomorphism theorems: in the first place, we show that the Teichmüller spaces of surfaces of different topological type are not, in general, equivalent. We then show that, if the topological type is preserved, but the signature changes, then the deformations spaces are isomorphic. These are generalizations of the Patterson and Bers-Greenberg theorems for Teichmüller spaces of Riemann surfaces, respectively.


Sign in / Sign up

Export Citation Format

Share Document