scholarly journals Au-dessous de Specℤ

Author(s):  
Bertrand Toën ◽  
Michel Vaquié

AbstractIn this article we use the theories of relative algebraic geometry and of homotopical algebraic geometry (cf. [HAGII]) to construct some categories of schemes defined under Specℤ. We define the categories of ℕ-schemes, 1-schemes, -schemes, +-schemes and 1-schemes, where (from an intuitive point of view) ℕ is the semi-ring of natural numbers, 1 is the field with one element, is the ring spectra of integers, + is the semi-ring spectra of natural numbers and 1 is the ring spectra with one element. These categories of schemes are linked together by base change functors, and all of them have a base change functor to the category of ℤ-schemes. We show that the linear group Gln and the toric varieties can be defined as objects in these categories.

1985 ◽  
Vol 50 (2) ◽  
pp. 397-406 ◽  
Author(s):  
Franco Montagna ◽  
Andrea Sorbi

When dealing with axiomatic theories from a recursion-theoretic point of view, the notion of r.e. preordering naturally arises. We agree that an r.e. preorder is a pair = 〈P, ≤P〉 such that P is an r.e. subset of the set of natural numbers (denoted by ω), ≤P is a preordering on P and the set {〈;x, y〉: x ≤Py} is r.e.. Indeed, if is an axiomatic theory, the provable implication of yields a preordering on the class of (Gödel numbers of) formulas of .Of course, if ≤P is a preordering on P, then it yields an equivalence relation ~P on P, by simply letting x ~Py iff x ≤Py and y ≤Px. Hence, in the case of P = ω, any preordering yields an equivalence relation on ω and consequently a numeration in the sense of [4]. It is also clear that any equivalence relation on ω (hence any numeration) can be regarded as a preordering on ω. In view of this connection, we sometimes apply to the theory of preorders some of the concepts from the theory of numerations (see also Eršov [6]).Our main concern will be in applications of these concepts to logic, in particular as regards sufficiently strong axiomatic theories (essentially the ones in which recursive functions are representable). From this point of view it seems to be of some interest to study some remarkable prelattices and Boolean prealgebras which arise from such theories. It turns out that these structures enjoy some rather surprising lattice-theoretic and universal recursion-theoretic properties.After making our main definitions in §1, we examine universal recursion-theoretic properties of some r.e. prelattices in §2.


Author(s):  
D. Huybrechts

This book provides a systematic exposition of the theory of Fourier-Mukai transforms from an algebro-geometric point of view. Assuming a basic knowledge of algebraic geometry, the key aspect of this book is the derived category of coherent sheaves on a smooth projective variety. The derived category is a subtle invariant of the isomorphism type of a variety, and its group of autoequivalences often shows a rich structure. As it turns out — and this feature is pursued throughout the book — the behaviour of the derived category is determined by the geometric properties of the canonical bundle of the variety. Including notions from other areas, e.g., singular cohomology, Hodge theory, abelian varieties, K3 surfaces; full proofs and exercises are provided. The final chapter summarizes recent research directions, such as connections to orbifolds and the representation theory of finite groups via the McKay correspondence, stability conditions on triangulated categories, and the notion of the derived category of sheaves twisted by a gerbe.


This paper contains a formal framework within which logic, set theory and programming are presented together. These elements can be presented together because, in this work, we no longer regard a (procedural) programming notation (such as PASCAL) as a notation for expressing a computation; rather, we regard it as a mere extension to the conventional language of logic and set theory. The extension constitutes a convenient (economical) way of expressing certain relational statements. A consequence of this point of view is that the activity of program construction is transformed into that of proof construction. To ensure that this activity of proof construction can be given a sound mechanizable foundation, we present a number of theories in the form of some basic deduction and definition rules. For instance, such theories compose the two logical calculi, a weaker version of the standard Zermelo-Fraenkel set theory, as well as some other elementary mathematical theories leading up to the construction of natural numbers. This last theory acts as a paradigm for the construction of other types such as sequences or trees. Parallel to these mathematical constructions we axiomatize a certain programming notation by giving equivalents to its basic constructs within logic and set theory. A number of other non-logical theories are also presented, which allows us to completely mechanize the calculus of proof that is implied by this framework.


1991 ◽  
Vol 06 (16) ◽  
pp. 2847-2858 ◽  
Author(s):  
Raoul Bott

E. Verlinde’s formula for the dimension of the nonabelian θ-functions is discussed from an algebraic geometry point of view and related to certain quotient rings of the representative ring of sums.


Author(s):  
Edward Tutaj

Abstract We define and study some simple structures which we call likens and which are conceptually near to both sets of natural numbers, i.e. ℕ with addition and ℕ* = ℕ \ {0} with multiplication. It appears that there are many different likens, which makes it possible to look on usual natural numbers from a more general point of view. In particular, we show that ℕ and ℕ* are related to some functionals on the space of likens. A similar idea is known for a long time as the Beurling generalized numbers. Our approach may be considered as a little more natural and more general, since it admits the finitely generated likens.


1990 ◽  
Vol 117 ◽  
pp. 173-205 ◽  
Author(s):  
Yasuo Teranishi

The purpose of this paper is the study of some basic properties of universal induced characters and their applications to the representation theory of the classical groups (for the definition of a universal induced character, see § 3).The starting point was the paper [F] by E. Formanek on matrix invariants. In his paper [F], Formanek has investigated the Hilbert series for the ring of matrix invariants from the point of view of the representation theory of the general linear group and the symmetric group. In this paper we shall study polynomial concomitants of a group from the same point of view.


1983 ◽  
Vol 48 (3) ◽  
pp. 529-538 ◽  
Author(s):  
Claudio Bernardi ◽  
Andrea Sorbi

AbstractGiven two (positive) equivalence relations ~1, ~2 on the set ω of natural numbers, we say that ~1 is m-reducible to ~2 if there exists a total recursive function h such that for every x, y ∈ ω, we have x ~1y iff hx ~2hy. We prove that the equivalence relation induced in ω by a positive precomplete numeration is complete with respect to this reducibility (and, moreover, a “uniformity property” holds). This result allows us to state a classification theorem for positive equivalence relations (Theorem 2). We show that there exist nonisomorphic positive equivalence relations which are complete with respect to the above reducibility; in particular, we discuss the provable equivalence of a strong enough theory: this relation is complete with respect to reducibility but it does not correspond to a precomplete numeration.From this fact we deduce that an equivalence relation on ω can be strongly represented by a formula (see Definition 8) iff it is positive. At last, we interpret the situation from a topological point of view. Among other things, we generalize a result of Visser by showing that the topological space corresponding to a partition in e.i. sets is irreducible and we prove that the set of equivalence classes of true sentences is dense in the Lindenbaum algebra of the theory.


Sign in / Sign up

Export Citation Format

Share Document