scholarly journals Turbulence–flame interactions in lean premixed hydrogen: transition to the distributed burning regime

2011 ◽  
Vol 680 ◽  
pp. 287-320 ◽  
Author(s):  
A. J. ASPDEN ◽  
M. S. DAY ◽  
J. B. BELL

The response of lean (ϕ ≤ 0.4) premixed hydrogen flames to maintained homogeneous isotropic turbulence is investigated using detailed numerical simulation in an idealised three-dimensional configuration over a range of Karlovitz numbers from 10 to 1562. In particular, a focus is placed on turbulence sufficiently intense that the flames can no longer be considered to be in the thin reaction burning regime. This transition to the so-called distributed burning regime is characterised through a number of diagnostics, and the relative roles of molecular and turbulent mixing processes are examined. The phenomenology and statistics of these flames are contrasted with a distributed thermonuclear flame from a related astrophysical study.

2013 ◽  
Vol 5 (3) ◽  
pp. 435-445
Author(s):  
M. S. I. Mallik ◽  
M. A. Uddin ◽  
M. A. Rahman

Direct numerical simulation (DNS) in two-dimensional homogeneous isotropic turbulence is performed by using the Spectral method at a Reynolds number Re = 1000 on a uniformly distributed grid points. The Reynolds number is low enough that the computational grid is capable of resolving all the possible turbulent scales. The statistical properties in the computed flow field show a good agreement with the qualitative behavior of decaying turbulence. The behavior of the flow structures in the computed flow field also follow the classical idea of the fluid flow in turbulence. Keywords: Direct numerical simulation, Isotropic turbulence, Spectral method. © 2013 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi:http://dx.doi.org/10.3329/jsr.v5i3.12665 J. Sci. Res. 5 (3), 435-445 (2013)  


Author(s):  
Marco Vanni

The stresses acting on aggregates smaller than the Kolmogorov length scale in homogeneous isotropic turbulence were estimated by a two-scale numerical simulation. The fluid dynamics at the scales larger than the Kolmogorov length scale was calculated by a Direct Numerical Simulation of the turbulent flow, in which the aggregates were modeled as point particles. Then, we adopted Stokesian Dynamics to evaluate the phenomena governed by the smooth velocity field of the smallest scales. At this level the disordered structure of the aggregates was modeled in detail, in order to take into account the role that the primary particles have in generating and transferring the internal stress. From this result, it was possible to evaluate the internal forces acting at intermonomer contacts and determine the occurrence of breakup as a consequence of the failure of intermonomer bonds. The method was applied to disordered aggregates with isostatic and highly hyperstatic structures, respectively.


Sign in / Sign up

Export Citation Format

Share Document