scholarly journals The elemental shear dynamo

2012 ◽  
Vol 699 ◽  
pp. 414-452 ◽  
Author(s):  
James C. McWilliams

AbstractA quasi-linear theory is presented for how randomly forced, barotropic velocity fluctuations cause an exponentially growing, large-scale (mean) magnetic dynamo in the presence of a uniform parallel shear flow. It is a ‘kinematic’ theory for the growth of the mean magnetic energy from a small initial seed, neglecting the saturation effects of the Lorentz force. The quasi-linear approximation is most broadly justifiable by its correspondence with computational solutions of nonlinear magnetohydrodynamics, and it is rigorously derived in the limit of small magnetic Reynolds number, ${\mathit{Re}}_{\eta } \ll 1$. Dynamo action occurs even without mean helicity in the forcing or flow, but random helicity variance is then essential. In a sufficiently large domain and with a small seed wavenumber in the direction perpendicular to the mean shearing plane, a positive exponential growth rate $\gamma $ can occur for arbitrary values of ${\mathit{Re}}_{\eta } $, viscous Reynolds number ${\mathit{Re}}_{\nu } $, and random-force correlation time ${t}_{f} $ and orientation angle ${\theta }_{f} $ in the shearing plane. The value of $\gamma $ is independent of the domain size. The shear dynamo is ‘fast’, with finite $\gamma \gt 0$ in the limit of ${\mathit{Re}}_{\eta } \gg 1$. Averaged over random realizations of the forcing history, the ensemble-mean magnetic field grows more slowly, if at all, compared to the r.m.s. field (magnetic energy). In the limit of small ${\mathit{Re}}_{\eta } $ and ${\mathit{Re}}_{\nu } $, the dynamo behaviour is related to the well-known alpha–omega ansatz when the force is slowly varying ($\gamma {t}_{f} \gg 1$) and to the ‘incoherent’ alpha–omega ansatz when the force is more rapidly fluctuating.

1970 ◽  
Vol 41 (2) ◽  
pp. 435-452 ◽  
Author(s):  
H. K. Moffatt

The effect of turbulence on a magnetic field whose length-scale L is initially large compared with the scale l of the turbulence is considered. There are no external sources for the field, and in the absence of turbulence it decays by ohmic dissipation. It is assumed that the magnetic Reynolds number Rm = u0l/λ (where u0 is the root-mean-square velocity and λ the magnetic diffusivity) is small. It is shown that to lowest order in the small quantities l/L and Rm, isotropic turbulence has no effect on the large-scale field; but that turbulence that lacks reflexional symmetry is capable of amplifying Fourier components of the field on length scales of order Rm−2l and greater. In the case of turbulence whose statistical properties are invariant under rotation of the axes of reference, but not under reflexions in a point, it is shown that the magnetic energy density of a magnetic field which is initially a homogeneous random function of position with a particularly simple spectrum ultimately increases as t−½exp (α2t/2λ3) where α(= O(u02l)) is a certain linear functional of the spectrum tensor of the turbulence. An analogous result is obtained for an initially localized field.


2011 ◽  
Vol 690 ◽  
pp. 262-287 ◽  
Author(s):  
B. Favier ◽  
P. J. Bushby

AbstractWe study dynamo action in a convective layer of electrically conducting, compressible fluid, rotating about the vertical axis. At the upper and lower bounding surfaces, perfectly conducting boundary conditions are adopted for the magnetic field. Two different levels of thermal stratification are considered. If the magnetic diffusivity is sufficiently small, the convection acts as a small-scale dynamo. Using a definition for the magnetic Reynolds number ${R}_{M} $ that is based upon the horizontal integral scale and the horizontally averaged velocity at the mid-layer of the domain, we find that rotation tends to reduce the critical value of ${R}_{M} $ above which dynamo action is observed. Increasing the level of thermal stratification within the layer does not significantly alter the critical value of ${R}_{M} $ in the rotating calculations, but it does lead to a reduction in this critical value in the non-rotating cases. At the highest computationally accessible values of the magnetic Reynolds number, the saturation levels of the dynamo are similar in all cases, with the mean magnetic energy density somewhere between 4 and 9 % of the mean kinetic energy density. To gain further insights into the differences between rotating and non-rotating convection, we quantify the stretching properties of each flow by measuring Lyapunov exponents. Away from the boundaries, the rate of stretching due to the flow is much less dependent upon depth in the rotating cases than it is in the corresponding non-rotating calculations. It is also shown that the effects of rotation significantly reduce the magnetic energy dissipation in the lower part of the layer. We also investigate certain aspects of the saturation mechanism of the dynamo.


2000 ◽  
Vol 403 ◽  
pp. 263-276 ◽  
Author(s):  
A. ALEMANY ◽  
Ph. MARTY ◽  
F. PLUNIAN ◽  
J. SOTO

The fast breeder reactors (FBR) BN600 (Russia) and Phenix (France) have been the subject of several experimental studies aimed at the observation of dynamo action. Though no dynamo effect has been identified, the possibility was raised for the FBR Superphenix (France) which has an electric power twice that of BN600 and five times larger than Phenix. We present the results of a series of experimental investigations on the secondary pumps of Superphenix. The helical sodium flow inside one pump corresponds to a maximum magnetic Reynolds number (Rm) of 25 in the experimental conditions (low temperature). The magnetic field was recorded in the vicinity of the pumps and no dynamo action has been identified. An estimate of the critical flow rate necessary to reach dynamo action has been found, showing that the pumps are far from producing dynamo action. The magnetic energy spectrum was also recorded and analysed. It is of the form k−11/3, suggesting the existence of a large-scale magnetic field. Following Moffatt (1978), this spectrum slope is also justified by a phenomenological approach.


2015 ◽  
Vol 81 (6) ◽  
Author(s):  
Steven M. Tobias ◽  
Fausto Cattaneo

Recent advances in dynamo theory have been made by examining the competition between small- and large-scale dynamos at high magnetic Reynolds number $\mathit{Rm}$. Small-scale dynamos rely on the presence of chaotic stretching whilst the generation of large-scale fields occurs in flows lacking reflectional symmetry via a systematic electromotive force (EMF). In this paper we discuss how the statistics of the EMF (at high $\mathit{Rm}$) depend on the properties of the multi-scale velocity that is generating it. In particular, we determine that different scales of flow have different contributions to the statistics of the EMF, with smaller scales contributing to the mean without increasing the variance. Moreover, we determine when scales in such a flow act independently in their contribution to the EMF. We further examine the role of large-scale shear in modifying the EMF. We conjecture that the distribution of the EMF, and not simply the mean, largely determines the dominant scale of the magnetic field generated by the flow.


2013 ◽  
Vol 9 (S302) ◽  
pp. 134-137 ◽  
Author(s):  
Jörn Warnecke ◽  
Axel Brandenburg

AbstractWe report on turbulent dynamo simulations in a spherical wedge with an outer coronal layer. We apply a two-layer model where the lower layer represents the convection zone and the upper layer the solar corona. This setup is used to study the coronal influence on the dynamo action beneath the surface. Increasing the radial coronal extent gradually to three times the solar radius and changing the magnetic Reynolds number, we find that dynamo action benefits from the additional coronal extent in terms of higher magnetic energy in the saturated stage. The flux of magnetic helicity can play an important role in this context.


2018 ◽  
Vol 839 ◽  
pp. 1-32 ◽  
Author(s):  
L. Chen ◽  
W. Herreman ◽  
K. Li ◽  
P. W. Livermore ◽  
J. W. Luo ◽  
...  

We present a variational optimization method that can identify the most efficient kinematic dynamo in a sphere, where efficiency is based on the value of a magnetic Reynolds number that uses enstrophy to characterize the inductive effects of the fluid flow. In this large-scale optimization, we restrict the flow to be steady and incompressible, and the boundary of the sphere to be no-slip and electrically insulating. We impose these boundary conditions using a Galerkin method in terms of specifically designed vector field bases. We solve iteratively for the flow field and the accompanying magnetic eigenfunction in order to find the minimal critical magnetic Reynolds number $Rm_{c,min}$ for the onset of a dynamo. Although nonlinear, this iteration procedure converges to a single solution and there is no evidence that this is not a global optimum. We find that $Rm_{c,min}=64.45$ is at least three times lower than that of any published example of a spherical kinematic dynamo generated by steady flows, and our optimal dynamo clearly operates above the theoretical lower bounds for dynamo action. The corresponding optimal flow has a spatially localized helical structure in the centre of the sphere, and the dominant components are invariant under rotation by $\unicode[STIX]{x03C0}$.


2020 ◽  
Vol 86 (4) ◽  
Author(s):  
F. Cattaneo ◽  
G. Bodo ◽  
S. M. Tobias

The relationship between nonlinear large-scale dynamo action and the generation and transport of magnetic helicity is investigated at moderate values of the magnetic Reynolds number ( $Rm$ ). The model consists of a helically forced, sheared flow in a Cartesian domain. The boundary conditions are periodic in the horizontal and impenetrable for the vertical. The magnetic field is required to be vertical at the upper and lower boundaries. There are two consequences of this choice; one is that the magnetic helicity is not gauge invariant, the second is that fluxes of magnetic helicity are allowed in and out of the domain. We select the winding gauge, define all the contributions to the evolution of the helicity in this gauge and measure these contributions for various solutions of the dynamo equations. We vary $Rm$ and the shear strength, and find a rich landscape of dynamo solutions including travelling waves, pulsating waves and non-wave-like solutions. We find that, at the $Rm$ considered, the main contribution to the growth of magnetic helicity comes from processes throughout the volume of the fluid and that boundary terms respond by limiting the growth. We find that, in this magnetic Reynolds number regime, helicity conservation is not a strong constraint on large-scale dynamo action. We speculate on what may happen at higher $Rm$ .


1981 ◽  
Vol 104 ◽  
pp. 419-443 ◽  
Author(s):  
J. Léorat ◽  
A. Pouquet ◽  
U. Frisch

Liquid-sodium-cooled breeder reactors may soon be operating at magnetic Reynolds numbers RM where magnetic fields can be self-excited by a dynamo mechanism (as first suggested by Bevir 1973). Such flows have kinetic Reynolds numbers RV of the order of 107 and are therefore highly turbulent.This leads us to investigate the behaviour of MHD turbulence with high RV and low magnetic Prandtl numbers. We use the eddy-damped quasi-normal Markovian closure applied to the MHD equations. For simplicity we restrict ourselves to homogeneous and isotropic turbulence, but we do include helicity.We obtain a critical magnetic Reynolds number RMc of the order of a few tens (non-helical case) above which magnetic energy is present. RMc is practically independent of RV (in the range 40 to 106). RMc can be considerably decreased by the presence of helicity: when the overall size of the flow L is much larger than the integral scale l0, RMc can drop below unity as suggested by an α-effect argument. When L ≈ l0 the drop can still be substantial (factor of 6) when helicity is a maximum. We examine how the turbulence is modified when RM crosses RMc: presence of magnetic energy, decreased kinetic energy, steepening of kinetic-energy spectrum, etc.We make no attempt to obtain quantitative estimates for a breeder reactor, but discuss some of the possible consequences of exceeding RMc, such as decreased turbulent heat transport. More precise information may be obtained from numerical simulations and experiments (including some in the subcritical regime).


Sign in / Sign up

Export Citation Format

Share Document