Natural convection in horizontal pipe flow with a strong transverse magnetic field

2013 ◽  
Vol 720 ◽  
pp. 486-516 ◽  
Author(s):  
Oleg Zikanov ◽  
Yaroslav I. Listratov ◽  
Valentin G. Sviridov

AbstractLinear stability analysis and direct numerical simulations are conducted to analyse mixed convection in a liquid metal flow in a horizontal pipe with imposed transverse magnetic field. The pipe walls are electrically insulated and subject to constant flux heating in the lower half. The results reveal the nature of anomalous temperature fluctuations detected in earlier experiments. It is found that, at the magnetic field strength far exceeding the laminarization threshold, the natural convection develops in the form of coherent quasi-two-dimensional rolls aligned with the magnetic field. Transport of the rolls by the mean flow causes high-amplitude, low-frequency fluctuations of temperature.

2019 ◽  
Vol 867 ◽  
pp. 661-690 ◽  
Author(s):  
Oleg Zikanov ◽  
Dmitry Krasnov ◽  
Thomas Boeck ◽  
Semion Sukoriansky

Decay of honeycomb-generated turbulence in a duct with a static transverse magnetic field is studied via direct numerical simulations. The simulations follow the revealing experimental study of Sukoriansky et al. (Exp. Fluids, vol. 4 (1), 1986, pp. 11–16), in particular the paradoxical observation of high-amplitude velocity fluctuations, which exist in the downstream portion of the flow when the strong transverse magnetic field is imposed in the entire duct including the honeycomb exit, but not in other configurations. It is shown that the fluctuations are caused by the large-scale quasi-two-dimensional structures forming in the flow at the initial stages of the decay and surviving the magnetic suppression. Statistical turbulence properties, such as the energy decay curves, two-point correlations and typical length scales are computed. The study demonstrates that turbulence decay in the presence of a magnetic field is a complex phenomenon critically depending on the state of the flow at the moment the field is introduced.


2011 ◽  
Vol 337 ◽  
pp. 300-306
Author(s):  
Wen Chang Lang

The object of this article is to make research on the influence of transverse magnetic field and pulse bias on macro-particles on the surface of film, find the systematic law and analyze the influence law and reasons of the two parameters (transverse magnetic field and pulse bias), according to the mechanism of arc spot movement and the interaction between macro-particles and plasma. Moreover, this article aims at seeking the most important influence parameter and comparing the effect of the two parameters. Research in this paper indicates that: the key factor is the magnetic field controlled arc spot movement, because the influence of magnetic field on reducing macro-particles is much larger than bias, and the influence degree of bias on macro-particles varies with the magnetic field intensity; action of bias is obvious under the condition of low magnetic field intensity, but as the magnetic field intensity increases, its action becomes weaker and weaker; besides, purification effect of bias on particles in larger size is better than on particles in smaller size.


1998 ◽  
Vol 76 (7) ◽  
pp. 507-513
Author(s):  
O Bolina ◽  
J R Parreira

We show that the ground state of the xy model (ferromagnetic orantiferromagnetic) in a transverse magnetic field h --- for any spin value, in any dimension --- is the state with all spins aligned antiparallel to the field when h is greater than some critical value hc. In particular, for the spin-1/2 linear chain, we study the behavior of correlations as functions of the magnetic field. PACS Nos.: 75.10Jm and 64.60.Cm


2021 ◽  
Vol 57 (2) ◽  
pp. 211-222

A liquid metal flat jet immersed in a square duct under the influence of a transverse magnetic field is studied experimentally. Two cases are considered: when the applied magnetic field is oriented parallel (coplanar field) or perpendicularly (transverse field) to the initial plane of the jet. The main goal of the study is to investigate the mean flow characteristics and the stages of the jet's transformation. Signals of streamwise velocity at different locations are measured, which allows us to determine average velocity profiles and spatial-temporal characteristics of the velocity field. The two considered configurations are directly compared under the same flow regimes, with the same equipment. Figs 8, Refs 11.


In a previous paper (1932) an attempt to measure the effect, if any, of a transverse magnetic field on the velocity of light in vacuo was described. No change greater than 1 part in 2 x 10 7 was found in a field of 18,000 oersted. As the Jamin interferometer used had certain drawbacks for an experiment of this kind, it was decided to set up a Michelson type of interferometer, the use of which might be expected to avoid some of these difficulties and increase the sensitivity. In particular, one of the interfering rays could be made to pass twice through the magnetic field, or, by means of auxiliary mirrors, a multiple of this, while the other interfering ray, being at right angles to the first, was well away from the vicinity of the main leakage field, which would have a compensating effect as far as any change in velocity was concerned.


Sign in / Sign up

Export Citation Format

Share Document