Turbulence statistics in Couette flow at high Reynolds number

2014 ◽  
Vol 758 ◽  
pp. 327-343 ◽  
Author(s):  
Sergio Pirozzoli ◽  
Matteo Bernardini ◽  
Paolo Orlandi

AbstractWe investigate the behaviour of the canonical turbulent Couette flow at computationally high Reynolds number through a series of large-scale direct numerical simulations. We achieve a Reynolds number $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathit{Re}_{\tau } = h/\delta _v \approx 1000$, where $h$ is the channel half-height and $\delta _v$ is the viscous length scale at which some phenomena representative of the asymptotic Reynolds-number regime manifest themselves. While a logarithmic mean velocity profile is found to provide a reasonable fit of the data, including the skin friction, closer scrutiny shows that deviations from the log law are systematic, and probably increasing at higher Reynolds numbers. The Reynolds stress distribution shows the formation of a secondary outer peak in the streamwise velocity variance, which is associated with significant excess of turbulent production as compared to the local dissipation. This excess is related to the formation of large-scale streaks and rollers, which are responsible for a substantial fraction of the turbulent shear stress in the channel core, and for significant increase of the turbulence intermittency in the near-wall region.

2014 ◽  
Vol 751 ◽  
Author(s):  
V. Avsarkisov ◽  
S. Hoyas ◽  
M. Oberlack ◽  
J. P. García-Galache

AbstractA new set of numerical simulations of turbulent plane Couette flow in a large box of dimension ($\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}20\pi h,\, 2h,\, 6\pi h$) at Reynolds number $(\mathit{Re}_{\tau }) =125$, 180, 250 and 550 is described and compared with simulations at lower Reynolds numbers, Poiseuille flows and experiments. The simulations present a logarithmic near-wall layer and are used to verify and revise previously known results. It is confirmed that the fluctuation intensities in the streamwise and spanwise directions do not scale well in wall units. The scaling failure occurs both near to and away from the wall. On the contrary, the wall-normal intensity scales in inner units in the near-wall region and in outer units in the core region. The spectral ridge found by Hoyas & Jiménez (Phys. Fluids, vol. 18, 2003, 011702) for the turbulent Poiseuille flow can also be seen in the present flow. Away from the wall, very large-scale motions are found spanning through all the length of the channel. The statistics of these simulations can be downloaded from the webpage of the Chair of Fluid Dynamics.


2011 ◽  
Vol 666 ◽  
pp. 573-604 ◽  
Author(s):  
M. GUALA ◽  
M. METZGER ◽  
B. J. McKEON

Simultaneous streamwise velocity measurements across the vertical direction obtained in the atmospheric surface layer (Reτ ≃ 5 × 105) under near thermally neutral conditions are used to outline and quantify interactions between the scales of turbulence, from the very-large-scale motions to the dissipative scales. Results from conditioned spectra, joint probability density functions and conditional averages show that the signature of very-large-scale oscillations can be found across the whole wall region and that these scales interact with the near-wall turbulence from the energy-containing eddies to the dissipative scales, most strongly in a layer close to the wall, z+ ≲ 103. The scale separation achievable in the atmospheric surface layer appears to be a key difference from the low-Reynolds-number picture, in which structures attached to the wall are known to extend through the full wall-normal extent of the boundary layer. A phenomenological picture of very-large-scale motions coexisting and interacting with structures from the hairpin paradigm is provided here for the high-Reynolds-number case. In particular, it is inferred that the hairpin-packet conceptual model may not be exhaustively representative of the whole wall region, but only of a near-wall layer of z+ = O(103), where scale interactions are mostly confined.


2014 ◽  
Vol 757 ◽  
pp. 888-907 ◽  
Author(s):  
Richard J. A. M. Stevens ◽  
Michael Wilczek ◽  
Charles Meneveau

AbstractThe logarithmic law for the mean velocity in turbulent boundary layers has long provided a valuable and robust reference for comparison with theories, models and large-eddy simulations (LES) of wall-bounded turbulence. More recently, analysis of high-Reynolds-number experimental boundary-layer data has shown that also the variance and higher-order moments of the streamwise velocity fluctuations $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}u^{\prime +}$ display logarithmic laws. Such experimental observations motivate the question whether LES can accurately reproduce the variance and the higher-order moments, in particular their logarithmic dependency on distance to the wall. In this study we perform LES of very high-Reynolds-number wall-modelled channel flow and focus on profiles of variance and higher-order moments of the streamwise velocity fluctuations. In agreement with the experimental data, we observe an approximately logarithmic law for the variance in the LES, with a ‘Townsend–Perry’ constant of $A_1\approx 1.25$. The LES also yields approximate logarithmic laws for the higher-order moments of the streamwise velocity. Good agreement is found between $A_p$, the generalized ‘Townsend–Perry’ constants for moments of order $2p$, from experiments and simulations. Both are indicative of sub-Gaussian behaviour of the streamwise velocity fluctuations. The near-wall behaviour of the variance, the ranges of validity of the logarithmic law and in particular possible dependencies on characteristic length scales such as the roughness length $z_0$, the LES grid scale $\Delta $, and subgrid scale mixing length $C_s\Delta $ are examined. We also present LES results on moments of spanwise and wall-normal fluctuations of velocity.


2021 ◽  
Vol 126 (6) ◽  
Author(s):  
Dennis Bakhuis ◽  
Rodrigo Ezeta ◽  
Pim A. Bullee ◽  
Alvaro Marin ◽  
Detlef Lohse ◽  
...  

2015 ◽  
Vol 774 ◽  
pp. 395-415 ◽  
Author(s):  
Myoungkyu Lee ◽  
Robert D. Moser

A direct numerical simulation of incompressible channel flow at a friction Reynolds number ($\mathit{Re}_{{\it\tau}}$) of 5186 has been performed, and the flow exhibits a number of the characteristics of high-Reynolds-number wall-bounded turbulent flows. For example, a region where the mean velocity has a logarithmic variation is observed, with von Kármán constant ${\it\kappa}=0.384\pm 0.004$. There is also a logarithmic dependence of the variance of the spanwise velocity component, though not the streamwise component. A distinct separation of scales exists between the large outer-layer structures and small inner-layer structures. At intermediate distances from the wall, the one-dimensional spectrum of the streamwise velocity fluctuation in both the streamwise and spanwise directions exhibits $k^{-1}$ dependence over a short range in wavenumber $(k)$. Further, consistent with previous experimental observations, when these spectra are multiplied by $k$ (premultiplied spectra), they have a bimodal structure with local peaks located at wavenumbers on either side of the $k^{-1}$ range.


2003 ◽  
Vol 125 (1) ◽  
pp. 28-37 ◽  
Author(s):  
Ralph J. Volino ◽  
Michael P. Schultz ◽  
Christopher M. Pratt

Conditional sampling has been performed on data from a transitional boundary layer subject to high (initially 9%) freestream turbulence and strong (K=ν/U∞2dU∞/dx as high as 9×10−6) acceleration. Methods for separating the turbulent and nonturbulent zone data based on the instantaneous streamwise velocity and the turbulent shear stress were tested and found to agree. Mean velocity profiles were clearly different in the turbulent and nonturbulent zones, and skin friction coefficients were as much as 70% higher in the turbulent zone. The streamwise fluctuating velocity, in contrast, was only about 10% higher in the turbulent zone. Turbulent shear stress differed by an order of magnitude, and eddy viscosity was three to four times higher in the turbulent zone. Eddy transport in the nonturbulent zone was still significant, however, and the nonturbulent zone did not behave like a laminar boundary layer. Within each of the two zones there was considerable self-similarity from the beginning to the end of transition. This may prove useful for future modeling efforts.


Sign in / Sign up

Export Citation Format

Share Document