scholarly journals On the late-time behaviour of a bounded, inviscid two-dimensional flow

2015 ◽  
Vol 783 ◽  
pp. 1-22 ◽  
Author(s):  
David G. Dritschel ◽  
Wanming Qi ◽  
J. B. Marston

Using complementary numerical approaches at high resolution, we study the late-time behaviour of an inviscid incompressible two-dimensional flow on the surface of a sphere. Starting from a random initial vorticity field comprised of a small set of intermediate-wavenumber spherical harmonics, we find that, contrary to the predictions of equilibrium statistical mechanics, the flow does not evolve into a large-scale steady state. Instead, significant unsteadiness persists, characterised by a population of persistent small-scale vortices interacting with a large-scale oscillating quadrupolar vorticity field. Moreover, the vorticity develops a stepped, staircase distribution, consisting of nearly homogeneous regions separated by sharp gradients. The persistence of unsteadiness is explained by a simple point-vortex model characterising the interactions between the four main vortices which emerge.

2015 ◽  
Vol 786 ◽  
pp. 1-4 ◽  
Author(s):  
Paul K. Newton

The paper by Dritschel et al. (J. Fluid Mech., vol. 783, 2015, pp. 1–22) describes the long-time behaviour of inviscid two-dimensional fluid dynamics on the surface of a sphere. At issue is whether the flow settles down to an equilibrium or whether, for generic (random) initial conditions, the long-time solution is periodic, quasi-periodic or chaotic. While it might be surprising that this issue is not settled in the literature, it is important to keep in mind that the Euler equations form a dissipationless Hamiltonian system, hence the set of equations only redistributes the initial vorticity, generating smaller and smaller scales, while keeping kinetic energy, angular impulse and an infinite family of vorticity moments (Casimirs) intact. While special solutions that never settle down to an equilibrium state can be constructed using point vortices, vortex patches and other distributions, the fate of random initial conditions is a trickier problem. Previous statistical theories indicate that the long-time state should be a stationary large-scale distribution of vorticity. By carrying out careful numerical simulations using two different methods, the authors make a compelling case that the generic long-time state resembles a large-scale oscillating quadrupolar vorticity field, surrounded by persistent small-scale vortices. While numerical simulations can never conclusively settle this issue, the results might help guide future theories that seek to prove the existence of such an interesting dynamical long-time state.


1996 ◽  
Vol 36 (5) ◽  
pp. 367-372 ◽  
Author(s):  
R Benzi ◽  
A. J Manfroi ◽  
M Vergassola

1994 ◽  
Vol 265 ◽  
pp. 25-64 ◽  
Author(s):  
W. D. Smyth ◽  
W. R. Peltier

We examine the stability characteristics of a two-dimensional flow which consists initially of an inflexionally unstable shear layer on an f-plane. Under the action of the primary instability, the vorticity in the shear-layer initially coalesces into two Kelvin–Helmholtz vortices which subsequently merge to form a single coherent vortex. At a sequence of times during this process, we test the stability of the two-dimensional flow to fully three-dimensional perturbations. A somewhat novel approach is developed which removes inconsistencies in the secondary stability analyses which might otherwise arise owing to the time-dependence of the two-dimensional flow.In the non-rotating case, and before the onset of pairing, we obtain a spectrum of unstable longitudinal modes which is similar to that obtained previously by Pierrehumbert & Widnall (1982) for the Stuart vortex, and by Klaassen & Peltier (1985, 1989, 1991) for more realistic flows. In addition, we demonstrate the existence of a new sequence of three-dimensional subharmonic (and therefore ‘helical’) instabilities. After pairing is complete, the secondary instability spectrum is essentially unaltered except for a doubling of length- and timescales that is consistent with the notion of spatial and temporal self-similarity. Once pairing begins, the spectrum quickly becomes dominated by the unstable modes of the emerging subharmonic Kelvin–Helmholtz vortex, and is therefore similar to that which is characteristic of the post-pairing regime. Also in the context of non-rotating flow, we demonstrate that the direct transfer of energy into the dissipative subrange via secondary instability is possible only if the background flow is stationary, since even slow time-dependence acts to decorrelate small-scale modes and thereby to impose a short-wave cutoff on the spectrum.The stability of the merged vortex state is assessed for various values of the planetary vorticity f. Slow rotation may either stabilize or destabilize the columnar vortices, depending upon the sign of f, while fast rotation of either sign tends to be stabilizing. When f has opposite sign to the relative vorticity of the two-dimensional basic state, the flow becomes unstable to new mode of instability that has not been previously identified. Modes whose energy is concentrated in the vortex cores are shown to be associated, even at non-zero f, with Pierrehumbert's (1986) elliptical instability. Through detailed consideration of the vortex interaction mechanisms which drive instability, we are able to provide physical explanations for many aspects of the three-dimensionalization process.


1974 ◽  
Vol 1 (14) ◽  
pp. 57 ◽  
Author(s):  
M.S. Yalin ◽  
W.A. Price

Schematical relations for the size of dunes and for the duration of their development are derived assuming that the large scale formations on the surface of a movable bed are due to the largest eddies of turbulence. The considerations are confined to the simplest case of a two-dimensional flow and to the cohesionless granular material. The relations for tidal dunes are obtained by generalising the relations for unidirectional flow dunes, Special cases and the validity regions of the forms presented are discussed; suggestions for future measurements and model tests are included.


Sign in / Sign up

Export Citation Format

Share Document