scholarly journals Exact coherent structures at extreme Reynolds number

2016 ◽  
Vol 794 ◽  
pp. 1-4 ◽  
Author(s):  
G. P. Chini

Exact coherent structures (ECS), unstable three-dimensional solutions of the Navier–Stokes equations, play a fundamental role in transitional and turbulent wall flows. Dempsey et al. (J. Fluid Mech., vol. 791, 2016, pp. 97–121) demonstrate that at large Reynolds number reduced equations can be derived that simplify the computation and facilitate mechanistic understanding of these solutions. Their analysis shows that ECS in plane Poiseuille flow can be sustained by a novel inner–outer interaction between oblique near-wall Tollmien–Schlichting waves and interior streamwise vortices.

2014 ◽  
Vol 752 ◽  
pp. 602-625 ◽  
Author(s):  
Kengo Deguchi ◽  
Philip Hall

AbstractOur concern in this paper is with high-Reynolds-number nonlinear equilibrium solutions of the Navier–Stokes equations for boundary-layer flows. Here we consider the asymptotic suction boundary layer (ASBL) which we take as a prototype parallel boundary layer. Solutions of the equations of motion are obtained using a homotopy continuation from two known types of solutions for plane Couette flow. At high Reynolds numbers, it is shown that the first type of solution takes the form of a vortex–wave interaction (VWI) state, see Hall & Smith (J. Fluid Mech., vol. 227, 1991, pp. 641–666), and is located in the main part of the boundary layer. On the other hand, here the second type is found to support an equilibrium solution of the unit-Reynolds-number Navier–Stokes equations in a layer located a distance of $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}O(\ln \mathit{Re})$ from the wall. Here $\mathit{Re}$ is the Reynolds number based on the free-stream speed and the unperturbed boundary-layer thickness. The streaky field produced by the interaction grows exponentially below the layer and takes its maximum size within the unperturbed boundary layer. The results suggest the possibility of two distinct types of streaky coherent structures existing, possibly simultaneously, in disturbed boundary layers.


2021 ◽  
Vol 930 ◽  
Author(s):  
Kartik P. Iyer ◽  
Katepalli R. Sreenivasan ◽  
P.K. Yeung

Using direct numerical simulations performed on periodic cubes of various sizes, the largest being $8192^3$ , we examine the nonlinear advection term in the Navier–Stokes equations generating fully developed turbulence. We find significant dissipation even in flow regions where nonlinearity is locally absent. With increasing Reynolds number, the Navier–Stokes dynamics amplifies the nonlinearity in a global sense. This nonlinear amplification with increasing Reynolds number renders the vortex stretching mechanism more intermittent, with the global suppression of nonlinearity, reported previously, restricted to low Reynolds numbers. In regions where vortex stretching is absent, the angle and the ratio between the convective vorticity and solenoidal advection in three-dimensional isotropic turbulence are statistically similar to those in the two-dimensional case, despite the fundamental differences between them.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Filipe S. Pereira ◽  
Luís Eça ◽  
Guilherme Vaz

The importance of the turbulence closure to the modeling accuracy of the partially-averaged Navier–Stokes equations (PANS) is investigated in prediction of the flow around a circular cylinder at Reynolds number of 3900. A series of PANS calculations at various degrees of physical resolution is conducted using three Reynolds-averaged Navier–Stokes equations (RANS)-based closures: the standard, shear-stress transport (SST), and turbulent/nonturbulent (TNT) k–ω models. The latter is proposed in this work. The results illustrate the dependence of PANS on the closure. At coarse physical resolutions, a narrower range of scales is resolved so that the influence of the closure on the simulations accuracy increases significantly. Among all closures, PANS–TNT achieves the lowest comparison errors. The reduced sensitivity of this closure to freestream turbulence quantities and the absence of auxiliary functions from its governing equations are certainly contributing to this result. It is demonstrated that the use of partial turbulence quantities in such auxiliary functions calibrated for total turbulent (RANS) quantities affects their behavior. On the other hand, the successive increase of physical resolution reduces the relevance of the closure, causing the convergence of the three models toward the same solution. This outcome is achieved once the physical resolution and closure guarantee the precise replication of the spatial development of the key coherent structures of the flow.


2006 ◽  
Vol 128 (4) ◽  
pp. 573-578 ◽  
Author(s):  
Andrew L. Hazel ◽  
Matthias Heil

Motivated by the physiological problem of pulmonary airway reopening, we study the steady propagation of an air finger into a buckled elastic tube, initially filled with viscous fluid. The system is modeled using geometrically non-linear, Kirchhoff-Love shell theory, coupled to the free-surface Navier-Stokes equations. The resulting three-dimensional, fluid-structure-interaction problem is solved numerically by a fully coupled finite element method. Our study focuses on the effects of fluid inertia, which has been neglected in most previous studies. The importance of inertial forces is characterized by the ratio of the Reynolds and capillary numbers, Re∕Ca, a material parameter. Fluid inertia has a significant effect on the system’s behavior, even at relatively small values of Re∕Ca. In particular, compared to the case of zero Reynolds number, fluid inertia causes a significant increase in the pressure required to drive the air finger at a given speed.


2009 ◽  
Vol 625 ◽  
pp. 125-133 ◽  
Author(s):  
J. D. GIBBON

The issue of why computational resolution in Navier–Stokes turbulence is hard to achieve is addressed. Under the assumption that the three-dimensional Navier–Stokes equations have a global attractor it is nevertheless shown that solutions can potentially behave differently in two distinct regions of space–time $\mathbb{S}$± where $\mathbb{S}$− is comprised of a union of disjoint space–time ‘anomalies’. If $\mathbb{S}$− is non-empty it is dominated by large values of |∇ω|, which is consistent with the formation of vortex sheets or tightly coiled filaments. The local number of degrees of freedom ± needed to resolve the regions in $\mathbb{S}$± satisfies $\mathcal{N}^{\pm}(\bx,\,t)\lessgtr 3\sqrt{2}\,\mathcal{R}_{u}^{3},$, where u = uL/ν is a Reynolds number dependent on the local velocity field u(x, t).


Author(s):  
Frank E. Horvat ◽  
Minel J. Braun

This paper studies the numerical development of flow patterns and pressure profiles inside a hybrid Rayleigh step thrust bearing (HRSB) where the working magnetohydrodynamic (MHD) fluid is subject to an imposed magnetic field. This hybrid type bearing stems from integrating two classical component: the modified Rayleigh step (variable depth) and the hydrostatic feed entering at the center of the circular thrust bearing. The parameters used in this study consist of one geometric parameter, the Rayleigh step aspect ratio (depth to length ratio) and two dimensionless operational parameters, (i) the Reynolds number based on the hydrostatic fluid jet velocity entering the restrictor (Rejet) and the Reynolds number based on the smooth upper plate angular speed (Replate). The numerical results are obtained using the commercially available package ANSYS (CFX) [4], which utilizes the full three-dimensional Navier-Stokes equations for the steady-state incompressible MHD fluid with constant properties. Results to be presented will will contain both vector and pressure fields within the Rayleigh step profile and on the smooth lands.


2021 ◽  
Author(s):  
Taofiq Amoloye

Abstract The three main approaches in fluid dynamics are actual experiments, numerical simulations, and theoretical solutions. Numerical simulations and theoretical solutions are based on the continuity equation and Navier-Stokes equations (NSE) that govern experimental observations of fluid dynamics.Theoretical solutions can offer huge advantages over numerical solutions and experiments in the understanding of fluid flows and design. These advantages are in terms of cost and time consumption. However, theoretical solutions have been limited by the prized NSE problem that seeks a physically consistent solution than what classical potential theory (CPT) offers. Therefore, the current author refined CPT. He introduced refined potential theory (RPT) that provides a viscous potential/stream function as a physically consistent solution to the NSE problem. This function captures observable unsteady flow features including separation, wake, vortex shedding, compressibility, turbulence, and Reynolds-number-dependence. It appropriately combines the properties of a three-dimensional potential function that satisfy the inertia terms of NSE and the features of a stream function that satisfy the continuity equation, the viscous vorticity equation, and the viscous terms of NSE. RPT has been verified and validated against experimental and numerical results of incompressible unsteady sub-critical Reynolds number flows on stationary finite circular cylinder, sphere, and spheroid.


2016 ◽  
Vol 802 ◽  
pp. 634-666 ◽  
Author(s):  
Kengo Deguchi ◽  
Philip Hall

In recent years it has been established that vortex–wave interaction theory forms an asymptotic framework to describe high Reynolds number coherent structures in shear flows. Comparisons between the asymptotic approach and finite Reynolds number computations of equilibrium states from the full Navier–Stokes equations have suggested that the asymptotic approach is extremely accurate even at quite low Reynolds numbers. However, unlike the situation with an approach based on solving the full Navier–Stokes equations numerically, the vortex–wave interaction approach has not yet been developed to study the instability of the structures it describes. In this work, a comprehensive study of the different instabilities of vortex–wave interaction states is given and it is shown that there are three different time scales on which instabilities can develop. The most dangerous type is a rapidly growing Rayleigh instability of the streak part of the flow. The least dangerous type is a slow mode operating on the diffusion time scale of the roll–streak part of the flow. The third mode of instability, which we will refer to as the edge mode of instability, occurs on a time scale midway between those of the other two modes. The existence of the latter mode explains why some exact coherent structures can act as edge states between the laminar and turbulent attractors. These stability results are compared to results from Navier–Stokes calculations.


Sign in / Sign up

Export Citation Format

Share Document