A measure of scale-dependent asymmetry in turbulent boundary layer flows: scaling and Reynolds number similarity

2016 ◽  
Vol 797 ◽  
pp. 549-563 ◽  
Author(s):  
Arvind Singh ◽  
Kevin B. Howard ◽  
Michele Guala

The distribution of temporal scale-dependent streamwise velocity increments is investigated in turbulent boundary layer flows at laboratory and atmospheric Reynolds numbers, using the St. Anthony Falls Laboratory wind tunnel and the Surface Layer Turbulence and Environmental Science Test dataset, respectively. The third-order moments of velocity increments, or asymmetry index $A(a,z)$, is computed for varying wall distance $z$ and time scale separation $a$, where it was observed to leave a robust, distinct signature in the form of a hump, independent of Reynolds number and located across the inertial range. The hump is observed in wall region limited to $z^{+}<5\times 10^{3}$, with a tendency to shift towards smaller time scales as the surface is approached ($z^{+}<70$). Comparing the two datasets, the hump, and its location, are found to obey inner wall scaling and is regarded as a genuine feature of the canonical turbulent boundary layer. The magnitude cumulant analysis of the scale-dependent velocity increments further reveals that intermittency is also enhanced near the wall, in the same flow region where the asymmetry signature was observed. The combination of asymmetry and intermittency is inferred to point at non-local energy transfer and scale coupling across a range of scales. From a turbulent structure perspective, such non-local energy transfer can be seen as the result of strong scale-interaction processes between outer scale motions in the logarithmic layer impacting and distorting smaller scales at the wall, through abrupt energy transfer across scales bypassing the typical energy cascade of the inertial range.

1975 ◽  
Vol 67 (1) ◽  
pp. 125-143 ◽  
Author(s):  
H. Ueda ◽  
J. O. Hinze

Measurements have been made concerning the fine structure of the turbulence in the part adjacent to the wall of the wall region of a plane turbulent boundary layer. The objective was to gain further information concerning the larger-scale disturbance mechanism which is mainly responsible for the generation of turbulence. Hot-wire anemomet.ry was used and information on the fine structure was obtained by differentiating and filtering the hot-wire signal.The distributions of the Kolmogorov microscale and of the flatness and skewness factors of the axial fluctuating velocity u and its first and second derivative determined at two Reynolds numbers suggest the existence of Reynolds number similarity. In the region y+ < 15 the flatness and skewness factors of u increase with decreasing y+. At approximately y+ = 15 the flatness factor shows a minimum value, while the skewness factor becomes zero. This location agrees with that where the turbulence intensity u′ has a maximum value. In the outer part of the wall region (y+ > 100) the flatness and skewness factors approach values obtained in shear-free turbulence at the same turbulence Reynolds number.The fine structure of the turbulence is strongly associated with and dominated by the random, larger-scale, intermittent inrush-ejection cycle. In the viscous sublayer both the fine structure, and the large-scale mechanism of the turbulence are influenced mainly by the inrush phase, while further out in the wall region (y+ > 40) they are influenced by both inrush and ejection. As a result, in the viscous sublayer the average burst periods of the high frequency turbulence components and their flatness factors (of ∂u/∂t and of ∂2u/∂t2) attain values twice those in the outer part.The change in the mechanism of the fine structure with distance from the wall is clearly demonstrated by the spectra of non-negative variables, i.e. (∂u/∂t)2 and (∂2u/∂t2)2. The spectra agree with each other and decrease with increasing frequency, following a power law as predicted by Gurvich & Yaglom (1967). The power law applies to almost the whole frequency range, when the highest, viscous, frequency range is excluded. However, the exponent is different for the viscous sublayer and the outer part of the wall region. In the buffer layer the spectra have two distinct power-law regions. In the lower frequency range the exponent is the same as that for the viscous sublayer, while in the higher frequency range it is the same as that for the outer part of the wall region.


A model of the dynamic physical processes that occur in the near-wall region of a turbulent flow at high Reynolds numbers is described. The hairpin vortex is postulated to be the basic flow structure of the turbulent boundary layer. It is argued that the central features of the near-wall flow can be explained in terms of how asymmetric hairpin vortices interact with the background shear flow, with each other, and with the surface layer near the wall. The physical process that leads to the regeneration of new hairpin vortices near the surface is described, as well as the processes of evolution of such vortices to larger-scale motions farther from the surface. The model is supported by recent important developments in the theory of unsteady surface-layer separation and a number of ‘kernel' experiments which serve to elucidate the basic fluid mechanics phenomena believed to be relevant to the turbulent boundary layer. Explanations for the kinematical behaviour observed in direct numerical simulations of low Reynolds number boundary-layer and channel flows are given. An important aspect of the model is that it has been formulated to be consistent with accepted rational mechanics concepts that are known to provide a proper mathematical description of high Reynolds number flow.


AIAA Journal ◽  
1993 ◽  
Vol 31 (10) ◽  
pp. 1777-1784 ◽  
Author(s):  
Sixin Fan ◽  
Budugur Lakshminarayana ◽  
Mark Barnett

2017 ◽  
Vol 19 (2) ◽  
pp. 45-55
Author(s):  
Nawaf H. Saeid

A near wall improvement of the k-ε model of turbulence is proposed and evaluated. The present model takes into account the asymptotic behavior of turbulent scales near wall region and for free turbulence region. The Kolmogorov turbulent time scale is introduced as a lower limit. The model is used for prediction of turbulent boundary layer flows. Predictions compared with experimental data of several flow cases, with encouraging results.


2020 ◽  
Vol 32 (12) ◽  
pp. 122111
Author(s):  
Hongyuan Li ◽  
SongSong Ji ◽  
Xiangkui Tan ◽  
Zexiang Li ◽  
Yaolei Xiang ◽  
...  

AIAA Journal ◽  
1977 ◽  
Vol 15 (8) ◽  
pp. 1152-1158 ◽  
Author(s):  
C. C. Horstman ◽  
G. S. Settles ◽  
I. E. Vas ◽  
S. M. Bogdonoff ◽  
C.M. Hung

1987 ◽  
Vol 30 (8) ◽  
pp. 2354 ◽  
Author(s):  
W. R. C. Phillips

Sign in / Sign up

Export Citation Format

Share Document