Low-frequency unsteadiness of swept shock-wave/turbulent-boundary-layer interaction

2018 ◽  
Vol 856 ◽  
pp. 797-821 ◽  
Author(s):  
Xin Huang ◽  
David Estruch-Samper

High-speed turbulent boundary-layer separation can lead to severe wall-pressure fluctuations, often extending over a swept shock region. Having noted the shear layer’s influence within axisymmetric step flows, tests go on to experimentally assess the unsteadiness of a canonical swept separation, caused by a slanted $90^{\circ }$-step discontinuity (with varying azimuthal height) over an axisymmetric turbulent boundary layer. Results document an increase in shock pulsation frequency along the swept separation region ($\unicode[STIX]{x1D6EC}\leqslant 30^{\circ }$ sweep angles) – whereby the recirculation enables downstream feedback via the reverse flow – as the local streamwise separation length is reduced. A link between the spanwise variation in the separation shock’s low-frequency instability and the downstream mass ejection rate, as large shear-layer eddies leave the bubble, is sustained. The local entrainment-recharge dynamics of swept separation are thereby duly evaluated.

Author(s):  
Frank J. Aldrich

A physics-based approach is employed and a new prediction tool is developed to predict the wavevector-frequency spectrum of the turbulent boundary layer wall pressure fluctuations for subsonic airfoils under the influence of adverse pressure gradients. The prediction tool uses an explicit relationship developed by D. M. Chase, which is based on a fit to zero pressure gradient data. The tool takes into account the boundary layer edge velocity distribution and geometry of the airfoil, including the blade chord and thickness. Comparison to experimental adverse pressure gradient data shows a need for an update to the modeling constants of the Chase model. To optimize the correlation between the predicted turbulent boundary layer wall pressure spectrum and the experimental data, an optimization code (iSIGHT) is employed. This optimization module is used to minimize the absolute value of the difference (in dB) between the predicted values and those measured across the analysis frequency range. An optimized set of modeling constants is derived that provides reasonable agreement with the measurements.


2000 ◽  
Vol 108 (1) ◽  
pp. 71-75 ◽  
Author(s):  
Timothy A. Brungart ◽  
Wayne J. Holmberg ◽  
Arnold A. Fontaine ◽  
Steven Deutsch ◽  
Howard L. Petrie

2010 ◽  
Vol 114 (1155) ◽  
pp. 299-308 ◽  
Author(s):  
D. Estruch ◽  
D. G. MacManus ◽  
D. P. Richardson ◽  
N. J. Lawson ◽  
K. P. Garry ◽  
...  

AbstractShock-wave/turbulent boundary-layer interactions (SWTBLIs) with separation are known to be inherently unsteady but their physical mechanisms are still not totally understood. An experimental investigation has been performed in a supersonic wind tunnel at a freestream flow Mach number of 2·42. The interaction between a shock wave created by a shock generator (α = 3°, α = 9°, α = 13° and α = 15° deflection angles) and a turbulent boundary layer with thickness δ = 5mm has been studied. High-speed Schlieren visualisations have been obtained and used to measure shock wave unsteadiness by means of digital image processing. In the interactions with separation, the reflected shock’s unsteadiness has been in the order of 102Hz. High-speed wall pressure measurements have also been obtained with fast-response micro-transducers along the interactions. Most of the energy of the incoming turbulent boundary layer is broadband and at high frequencies (>104Hz). An addition of low-frequency (<104Hz) fluctuation energy is found at separation. Along the interaction region, the shock impingement results in an amplification of fluctuation energy due to the increase in pressure. Under the main recirculation region core there is only an increase in high frequency energy (>104Hz). Amplification of lower frequency fluctuation energy (>103Hz) is also observed close to the separation and reattachment regions.


Sign in / Sign up

Export Citation Format

Share Document