scholarly journals Gyrotactic swimmers in turbulence: shape effects and role of the large-scale flow

2018 ◽  
Vol 856 ◽  
Author(s):  
M. Borgnino ◽  
G. Boffetta ◽  
F. De Lillo ◽  
M. Cencini

We study the dynamics and the statistics of dilute suspensions of gyrotactic swimmers, a model for many aquatic motile microorganisms. By means of extensive numerical simulations of the Navier–Stokes equations at different Reynolds numbers, we investigate preferential sampling and small-scale clustering as a function of the swimming (stability and speed) and shape parameters, considering in particular the limits of spherical and rod-like particles. While spherical swimmers preferentially sample local downwelling flow, for elongated swimmers we observe a transition from downwelling to upwelling regions at sufficiently high swimming speed. The spatial distribution of both spherical and elongated swimmers is found to be fractal at small scales in a wide range of swimming parameters. The direct comparison between the different shapes shows that spherical swimmers are more clusterized at small stability and speed numbers, while for large values of the parameters elongated cells concentrate more. The relevance of our results for phytoplankton swimming in the ocean is briefly discussed.

2002 ◽  
Vol 465 ◽  
pp. 99-130 ◽  
Author(s):  
A. V. OBABKO ◽  
K. W. CASSEL

Numerical solutions of the unsteady Navier–Stokes equations are considered for the flow induced by a thick-core vortex convecting along a surface in a two-dimensional incompressible flow. The presence of the vortex induces an adverse streamwise pressure gradient along the surface that leads to the formation of a secondary recirculation region followed by a narrow eruption of near-wall fluid in solutions of the unsteady boundary-layer equations. The locally thickening boundary layer in the vicinity of the eruption provokes an interaction between the viscous boundary layer and the outer inviscid flow. Numerical solutions of the Navier–Stokes equations show that the interaction occurs on two distinct streamwise length scales depending upon which of three Reynolds-number regimes is being considered. At high Reynolds numbers, the spike leads to a small-scale interaction; at moderate Reynolds numbers, the flow experiences a large-scale interaction followed by the small-scale interaction due to the spike; at low Reynolds numbers, large-scale interaction occurs, but there is no spike or subsequent small-scale interaction. The large-scale interaction is found to play an essential role in determining the overall evolution of unsteady separation in the moderate-Reynolds-number regime; it accelerates the spike formation process and leads to formation of secondary recirculation regions, splitting of the primary recirculation region into multiple corotating eddies and ejections of near-wall vorticity. These eddies later merge prior to being lifted away from the surface and causing detachment of the thick-core vortex.


2016 ◽  
Vol 799 ◽  
pp. 246-264 ◽  
Author(s):  
K. Seshasayanan ◽  
A. Alexakis

We study the linear stage of the dynamo instability of a turbulent two-dimensional flow with three components $(u(x,y,t),v(x,y,t),w(x,y,t))$ that is sometimes referred to as a 2.5-dimensional (2.5-D) flow. The flow evolves based on the two-dimensional Navier–Stokes equations in the presence of a large-scale drag force that leads to the steady state of a turbulent inverse cascade. These flows provide an approximation to very fast rotating flows often observed in nature. The low dimensionality of the system allows for the realization of a large number of numerical simulations and thus the investigation of a wide range of fluid Reynolds numbers $Re$, magnetic Reynolds numbers $Rm$ and forcing length scales. This allows for the examination of dynamo properties at different limits that cannot be achieved with three-dimensional simulations. We examine dynamos for both large and small magnetic Prandtl-number turbulent flows $Pm=Rm/Re$, close to and away from the dynamo onset, as well as dynamos in the presence of scale separation. In particular, we determine the properties of the dynamo onset as a function of $Re$ and the asymptotic behaviour in the large $Rm$ limit. We are thus able to give a complete description of the dynamo properties of these turbulent 2.5-D flows.


2019 ◽  
Vol 873 ◽  
pp. 89-109 ◽  
Author(s):  
Anagha Madhusudanan ◽  
Simon. J. Illingworth ◽  
Ivan Marusic

The wall-normal extent of the large-scale structures modelled by the linearized Navier–Stokes equations subject to stochastic forcing is directly compared to direct numerical simulation (DNS) data. A turbulent channel flow at a friction Reynolds number of $Re_{\unicode[STIX]{x1D70F}}=2000$ is considered. We use the two-dimensional (2-D) linear coherence spectrum (LCS) to perform the comparison over a wide range of energy-carrying streamwise and spanwise length scales. The study of the 2-D LCS from DNS indicates the presence of large-scale structures that are coherent over large wall-normal distances and that are self-similar. We find that, with the addition of an eddy viscosity profile, these features of the large-scale structures are captured by the linearized equations, except in the region close to the wall. To further study this coherence, a coherence-based estimation technique, spectral linear stochastic estimation, is used to build linear estimators from the linearized Navier–Stokes equations. The estimator uses the instantaneous streamwise velocity field or the 2-D streamwise energy spectrum at one wall-normal location (obtained from DNS) to predict the same quantity at a different wall-normal location. We find that the addition of an eddy viscosity profile significantly improves the estimation.


Author(s):  
Paul Ranford

Lucasian Professor Sir George Gabriel Stokes was appointed joint-Secretary of the Royal Society in 1854, a post he held for the unprecedented period of 31 years, relinquishing the role when he succeeded T.H. Huxley as President in 1885. An eminent scientist of the Victorian era, Stokes explained fluorescence (he also coined the word) and his hydrodynamical formulae (the ‘Navier–Stokes equations’) remain ubiquitous today in the physics of any phenomenon involving fluid flows, from pipelines to glaciers to large-scale atmospheric perturbations. He also made seminal advances in optics and mathematics, and formulae that bear his name remain widely used today. The historiography however appears to understate Stokes's significant impact on science as unacknowledged collaborator on a wide range of scientific developments. His scientific peers regarded him as a mentor, advisor, designer of crucial experiments and, as editor of the Royal Society's scientific journals, arbiter of the standards of excellence in scientific communication to be attained before publication would be considered. Three brief case studies on Stokes's correspondence with Lord Kelvin, Sir William Crookes and the chemist Arthur Smithells exemplify how his impact was conveyed through the work of other scientists. This paper also begins consideration of why the character and worldview of Stokes led him to eschew personal reputation and profit for the sake of science and the Royal Society, and of how the development of the discipline of history of science has impacted on historiography relating to Stokes and others. This article is part of the theme issue ‘Stokes at 200 (Part 1)’.


2019 ◽  
Vol 869 ◽  
pp. 646-673 ◽  
Author(s):  
L. Biferale ◽  
K. Gustavsson ◽  
R. Scatamacchia

We present numerical and theoretical results concerning the properties of turbulent flows with strong multi-scale helical injection. We perform direct numerical simulations of the Navier–Stokes equations under a random helical stirring with power-law spectrum and with different intensities of energy and helicity injections. We show that there exists three different regimes where the forward energy and helicity inertial transfers are: (i) both leading with respect to the external injections, (ii) energy transfer is leading and helicity transfer is sub-leading and (iii) both are sub-leading and helicity is maximal at all scales. As a result, the cases (ii)–(iii) give flows with Kolmogorov-like inertial energy cascade and tuneable helicity transfers/contents. We further explore regime (iii) by studying its effect on the kinetics of point-like isotropic helicoids, particles whose dynamics is isotropic but breaks parity invariance. We investigate small-scale fractal clustering and preferential sampling of intense helical flow structures. Depending on their structural parameters, the isotropic helicoids either preferentially sample co-chiral or anti-chiral flow structures. We explain these findings in limiting cases in terms of what is known for spherical particles of different densities and degrees of inertia. Furthermore, we present theoretical and numerical results for a stochastic model where dynamical properties can be calculated using analytical perturbation theory. Our study shows that a suitable tuning of the stirring mechanism can strongly modify the small-scale turbulent helical properties and demonstrates that isotropic helicoids are the simplest particles able to preferentially sense helical properties in turbulence.


1980 ◽  
Vol 99 (4) ◽  
pp. 817-840 ◽  
Author(s):  
Hans J. Lugt

Autorotation of an elliptic cylinder about an axis fixed perpendicular to a parallel flow is explained in this paper by means of numerical solutions of the Navier-Stokes equations. Potential-flow theory predicts, for constant angular velocity, half a period in which a torque supports rotation and half a period in which it opposes rotation, with vanishing torque in the average. This balance is disturbed by viscous-flow effects in such a way that, for a given angular velocity, vortex shedding either damps rotation or, under certain conditions, favours rotation. The proper interplay of those conditions, which include synchronization of vortex shedding and rate of rotation, results in auto-rotation. The numerical results forRe[les ] 400 are compared with experimental data forRe= 90000 from the literature. The agreement of the force coefficients and the large-scale flow patterns is surprisingly good.


1972 ◽  
Vol 54 (3) ◽  
pp. 481-488 ◽  
Author(s):  
W. C. Reynolds

The equations describing the statistical features of small amplitude waves in a turbulent shear flow are derived from the Navier-Stokes equations. Closure is achieved through a postulated constitutive equation for the alteration of the statistical properties of the turbulence by the organized wave. The theory is applied in an examination of the stability of a hypothetical wake consisting of small-scale turbulence enclosed within a steady uncontorted superlayer. A set of superlayer jump conditions is derived from fundamental considerations, and these are of more general interest. For this hypothetical flow the analysis predicts largescale instabilities and superlayer contortions reminiscent of large-eddy structures observed in real flows. These instabilities therefore offer an explanation of the presence of large-scale organized motions in turbulent free shear flows.


1996 ◽  
Vol 06 (01) ◽  
pp. 1-32 ◽  
Author(s):  
OLIVIER GOUBET

This article deals with the long-time behavior of the solution of the two-dimensional Navier–Stokes equations. At each time step, we use finite elements to split the solution into a large-scale component and a small-scale component, and we follow both components in time. Next, considering a mixed finite element approximation of the equations, we prove that many properties that hold for the exact solution extend to the discrete solution as well, uniformly in the discretization parameter.


1958 ◽  
Vol 8 ◽  
pp. 966-974
Author(s):  
H. E. Petschek

Analyses of aerodynamic dissipation in ordinary un-ionized gases are all based upon the Navier-Stokes equations. These equations relate the rate of dissipation to the local gradients in velocity and temperature through the viscosity and heat conduction coefficients. Although it is true that in many flow situations the magnitude of the total dissipation in the gas does not depend on the magnitude of the viscosity coefficient, this coefficient does determine the minimum scale of variations observed in the gas and the form of the Navier-Stokes equations determines the type of phenomena which are observed on a small scale. In order to discuss dissipation in an ionized gas in the presence of a magnetic field, it is therefore necessary to re-examine the derivation of the basic flow equations. This paper attempts to do this for a case of a completely ionized gas and demonstrates that the basic microscopic dissipation mechanism is appreciably different. For example, it is shown that the minimum length in which the properties of the flow field can change noticeably is appreciably less than one mean free path.


Sign in / Sign up

Export Citation Format

Share Document