Stability of a temporally evolving natural convection boundary layer on an isothermal wall

2019 ◽  
Vol 877 ◽  
pp. 1163-1185 ◽  
Author(s):  
Junhao Ke ◽  
N. Williamson ◽  
S. W. Armfield ◽  
G. D. McBain ◽  
S. E. Norris

The stability properties of a natural convection boundary layer adjacent to an isothermally heated vertical wall, with Prandtl number 0.71, are numerically investigated in the configuration of a temporally evolving parallel flow. The instantaneous linear stability of the flow is first investigated by solving the eigenvalue problem with a quasi-steady assumption, whereby the unsteady base flow is frozen in time. Temporal responses of the discrete perturbation modes are numerically obtained by solving the two-dimensional linearized disturbance equations using a ‘frozen’ base flow as an initial-value problem at various $Gr_{\unicode[STIX]{x1D6FF}}$, where $Gr_{\unicode[STIX]{x1D6FF}}$ is the Grashof number based on the velocity integral boundary layer thickness $\unicode[STIX]{x1D6FF}$. The resultant amplification rates of the discrete modes are compared with the quasi-steady eigenvalue analysis, and both two-dimensional and three-dimensional direct numerical simulations (DNS) of the temporally evolving flow. The amplification rate predicted by the linear theory compares well with the result of direct numerical simulation up to a transition point. The extent of the linear regime where the perturbations linearly interact with the base flow is thus identified. The value of the transition $Gr_{\unicode[STIX]{x1D6FF}}$, according to the three-dimensional DNS results, is dependent on the initial perturbation amplitude. Beyond the transition point, the DNS results diverge from the linear stability predictions as nonlinear mechanisms become important.

1968 ◽  
Vol 34 (4) ◽  
pp. 657-686 ◽  
Author(s):  
C. P. Knowles ◽  
B. Gebhart

This paper concerns the stability characteristics of laminar natural convection in external flows. Until recently, very little was known about such stability because of the inherent complexity of temperature-coupled flows and because of the complicated mechanisms of disturbance propagation. In this work the stability of the laminar natural convection boundary layer is examined more closely in an attempt to predict the experimental results recently obtained. In particular, it is shown that an important thermal capacity coupling exists between the fluid and the wall which generates the flow. This thermal capacity coupling is shown to have a first-order effect for particular Grashof-number wave-number products. Solutions are obtained for a Prandtl number of 0·733 and several values of relative wall thermal capacity. These solutions indicate the important role of this wall coupling. In particular, the results predict the experimental data previously obtained.In addition, solutions with ‘zero wall storage’ are obtained for a range of Prandtl numbers from 0·733 to 6·9. The relative disturbance u-velocity and temperature amplitudes and their phases are shown for Pr = 0·733 and several wall-storage parameters, and for Pr = 6·9 with zero wall storage. A comparison between the disturbance temperature distribution and the data obtained from a recent experimental investigation shows close agreement when the thermal capacity of the wall is taken into account.In the appendix, it is shown that for temperature-coupled flows and wall-coupled boundary conditions the flow is unstable at a lower Grashof number for two-dimensional disturbances than it is for three-dimensional disturbances. This result has been supported by the recent experimental observations.


2012 ◽  
Vol 15 (6) ◽  
pp. 585-593
Author(s):  
M. Jana ◽  
S. Das ◽  
S. L. Maji ◽  
Rabindra N. Jana ◽  
S. K. Ghosh

2017 ◽  
Vol 5 (4RAST) ◽  
pp. 52-58
Author(s):  
Jalaja P ◽  
Venkataramana B.S ◽  
Naveen V ◽  
K.R. Jayakumar

The effect of thermal radiation on steady natural convection boundary layer flow over a plate with variable viscosity and magnetic field has been studied in this paper. The effect of suction and injection is also considered in the investigation. The system of partial differential equations governing the nonsimilar flow has been solved numerically using implicit finite difference scheme along with a quasilinearization technique. The thermal radiation has significant effect on heat transfer coefficient and thermal transport in presence of viscosity variation parameter and magnetic field in case of suction and injection.


Sign in / Sign up

Export Citation Format

Share Document