Energy transfer in turbulent flows behind two side-by-side square cylinders

2020 ◽  
Vol 903 ◽  
Author(s):  
Yi Zhou ◽  
Koji Nagata ◽  
Yasuhiko Sakai ◽  
Tomoaki Watanabe ◽  
Yasumasa Ito ◽  
...  

Abstract

2017 ◽  
Vol 813 ◽  
pp. 1156-1175 ◽  
Author(s):  
H. Pouransari ◽  
H. Kolla ◽  
J. H. Chen ◽  
A. Mani

In this study we consider particle-laden turbulent flows with significant heat transfer between the two phases due to sustained heating of the particle phase. The sustained heat source can be due to particle heating via an external radiation source as in the particle-based solar receivers or an exothermic reaction in the particles. Our objective is to investigate the effects of fluid heating by a dispersed phase on the turbulence evolution. An important feature in such settings is the preferential clustering phenomenon which is responsible for non-uniform distribution of particles in the fluid medium. Particularly, when the ratio of particle inertial relaxation time to the turbulence time scale, namely the Stokes number, is of order unity, particle clustering is maximized, leading to thin regions of heat source similar to the flames in turbulent combustion. However, unlike turbulent combustion, a particle-laden system involves a wide range of clustering scales that is mainly controlled by particle Stokes number. To study these effects, we considered a decaying homogeneous isotropic turbulence laden with heated particles over a wide range of Stokes numbers. Using a low-Mach-number formulation for the fluid energy equation and a Lagrangian framework for particle tracking, we performed numerical simulations of this coupled system. We then applied a high-fidelity framework to perform spectral analysis of kinetic energy in a variable-density fluid. Our results indicate that particle heating can considerably influence the turbulence cascade. We show that the pressure-dilatation term introduces turbulent kinetic energy at a range of scales consistent with the scales observed in particle clusters. This energy is then transferred to high wavenumbers via the energy transfer term. For low and moderate levels of particle heating intensity, quantified by a parameter $\unicode[STIX]{x1D6FC}$ defined as the ratio of eddy time to mean temperature increase time, turbulence modification occurs primarily in the dilatational modes of the velocity field. However, as the heating intensity is increased, the energy transfer term converts energy from dilatational modes to divergence-free modes. Interestingly, as the heating intensity is increased, the net modification of turbulence by heating is observed dominantly in divergence-free modes; the portion of turbulence modification in dilatational modes diminishes with higher heating. Moreover, we show that modification of divergence-free modes is more pronounced at intermediate Stokes numbers corresponding to the maximum particle clustering. We also present the influence of heating intensity on the energy transfer term itself. This term crosses over from negative to positive values beyond a threshold wavenumber, showing the cascade of energy from large scales to small scales. The threshold is shown to shift to higher wavenumbers with increasing heating, indicating a growth in the total energy transfer from large scales to small scales. The fundamental energy transfer analysis presented in this paper provides insightful guidelines for subgrid-scale modelling and large-eddy simulation of heated particle-laden turbulence.


2019 ◽  
Vol 874 ◽  
pp. 677-698 ◽  
Author(s):  
Yi Zhou ◽  
Koji Nagata ◽  
Yasuhiko Sakai ◽  
Tomoaki Watanabe

Turbulent flows behind two side-by-side square cylinders with three different gap ratios, namely, $L_{d}/T_{0}=4,$ 6 and 8 ($L_{d}$ is the separation distance between two cylinders and $T_{0}$ is the cylinder thickness) are investigated by using direct numerical simulations. Depending on the strength of the gap flow, the three cases can generally be characterized into two regimes, one being the weak gap flow regime and the other being the robust gap flow regime. The wake-interaction length scale can only be applied to characterize the spatial evolution of the dual-wake flow in the robust gap flow regime. And only in this regime can the so-called ‘extreme events’ (i.e. non-Gaussian velocity fluctuations with large flatness) be identified. For the case with $L_{d}/T_{0}=6$, two downstream locations, i.e. $X/T_{0}=6$ and 26, at which the turbulent flows are highly non-Gaussian distributed and approximately Gaussian distributed, respectively, are analysed in detail. A well-defined $-5/3$ energy spectrum can be found in the near-field region (i.e. $X/T_{0}=6$), where the turbulent flow is still developing and highly intermittent and Kolmogorov’s universal equilibrium hypothesis does not hold. We confirm that the approximate $-5/3$ power law in the high-frequency range is closely related to the occurrences of the extreme events. As the downstream distance increases, the velocity fluctuations gradually adopt a Gaussian distribution, corresponding to a decrease in the strength of the extreme events. Consequently, the range of the $-5/3$ power law narrows. In the upstream region (i.e. $X/T_{0}=6$), the second-order structure function exhibits a power-law exponent close to $1$, whereas in the far downstream region (i.e. $X/T_{0}=26$) the expected $2/3$ power-law exponent appears. The larger exponent at $X/T_{0}=6$ is related to the fact that fluid motions in the intermediate range can directly ‘feel’ the large-scale vortex shedding.


2020 ◽  
Vol 892 ◽  
Author(s):  
Siwei Dong ◽  
Yongxiang Huang ◽  
Xianxu Yuan ◽  
Adrián Lozano-Durán


2016 ◽  
Vol 794 ◽  
pp. 369-408 ◽  
Author(s):  
Rodrigo M. Pereira ◽  
Christophe Garban ◽  
Laurent Chevillard

We investigate the statistical properties, based on numerical simulations and analytical calculations, of a recently proposed stochastic model for the velocity field (Chevillardet al.,Europhys. Lett., vol. 89, 2010, 54002) of an incompressible, homogeneous, isotropic and fully developed turbulent flow. A key step in the construction of this model is the introduction of some aspects of the vorticity stretching mechanism that governs the dynamics of fluid particles along their trajectories. An additional further phenomenological step aimed at including the long range correlated nature of turbulence makes this model dependent on a single free parameter,${\it\gamma}$, that can be estimated from experimental measurements. We confirm the realism of the model regarding the geometry of the velocity gradient tensor, the power-law behaviour of the moments of velocity increments (i.e. the structure functions) including the intermittent corrections and the existence of energy transfer across scales. We quantify the dependence of these basic properties of turbulent flows on the free parameter${\it\gamma}$and derive analytically the spectrum of exponents of the structure functions in a simplified non-dissipative case. A perturbative expansion in power of${\it\gamma}$shows that energy transfer, at leading order, indeed take place, justifying the dissipative nature of this random field.


2017 ◽  
Vol 833 ◽  
pp. 717-744 ◽  
Author(s):  
Shaowu Pan ◽  
Eric Johnsen

While Stokes’ hypothesis of neglecting bulk viscous effects is exact for monatomic gases and unlikely to strongly affect the dynamics of fluids whose bulk-to-shear viscosity ratio is small and/or of weakly compressible turbulence, it is unclear to what extent this assumption holds for compressible, turbulent flows of gases whose bulk viscosity is orders of magnitude larger than their shear viscosities (e.g. $\text{CO}_{2}$). Our objective is to understand the mechanisms by which bulk viscosity and the associated phenomena affect moderately compressible turbulence, in particular energy transfer and dissipation. Using direct numerical simulations of the compressible Navier–Stokes equations, we study the decay of compressible, homogeneous, isotropic turbulence for ratios of bulk-to-shear viscosity ranging from 0 to 1000. Our simulations demonstrate that bulk viscosity increases the decay rate of turbulent kinetic energy; whereas enstrophy exhibits little sensitivity to bulk viscosity, dilatation is reduced by over two orders of magnitude within the first two eddy-turnover times. Via a Helmholtz decomposition of the flow, we determine that the primary action of bulk viscosity is to damp the dilatational velocity fluctuations and reduce dilatational–solenoidal exchanges, as well as pressure–dilatation coupling. In short, bulk viscosity renders compressible turbulence incompressible by reducing energy transfer between translational and internal degrees of freedom. Our results indicate that for gases whose bulk viscosity is of the order of their shear viscosity (e.g. hydrogen) the turbulence is not significantly affected by bulk viscous dissipation, in which case neglecting bulk viscosity is acceptable in practice. However, in problems involving compressible, turbulent flows of gases like $\text{CO}_{2}$ whose bulk viscosities are thousands of times greater than their shear viscosities, bulk viscosity cannot be ignored.


2011 ◽  
Vol 26 (18) ◽  
pp. 2407-2413 ◽  
Author(s):  
Fa-Bin Cao ◽  
Xing-Rong Wu ◽  
Liao-Sha Li

Abstract


1994 ◽  
Vol 6 (4) ◽  
pp. 1583-1599 ◽  
Author(s):  
J. Andrzej Domaradzki ◽  
Wei Liu ◽  
Carlos Härtel ◽  
Leonhard Kleiser

2011 ◽  
Vol 676 ◽  
pp. 376-395 ◽  
Author(s):  
A. CIMARELLI ◽  
E. DE ANGELIS

The analysis of the energy transfer mechanisms in a filtered wall-turbulent flow is traditionally accomplished via the turbulent kinetic energy balance, as in Härtel et al. (Phys. Fluids, vol. 6, 1994, p. 3130) or via the analysis of the energy spectra, as in Domaradzki et al. (Phys. Fluids, vol. 6, 1994, p. 1583). However, a generalized Kolmogorov equation for channel flow has recently been proven successful in accounting for both spatial fluxes and energy transfer across the scales in a single framework by Marati, Casciola & Piva (J. Fluid Mech., vol. 521, 2004, p. 191). In this context, the same machinery is applied for the first time to a filtered velocity field. The results will show what effects the subgrid scales have on the resolved motion in both physical and scale space, singling out the prominent role of the filter scale compared to the cross-over scale between production-dominated scales and inertial range, lc, and the reverse energy cascade region ΩB. Finally, we will briefly discuss how the filtered Kolmogorov equation can be used as a new tool for the assessment of large eddy simulation (LES) models. Classical purely dissipative eddy viscosity models will be analysed via an a priori procedure.


Sign in / Sign up

Export Citation Format

Share Document