Flat plate drag reduction using plasma-generated streamwise vortices

2021 ◽  
Vol 918 ◽  
Author(s):  
X.Q. Cheng ◽  
C.W. Wong ◽  
F. Hussain ◽  
W. Schröder ◽  
Y. Zhou

Abstract

2012 ◽  
Vol 710 ◽  
pp. 234-259 ◽  
Author(s):  
B.-Q. Deng ◽  
C.-X. Xu

AbstractNear-wall streamwise vortices are closely related to the generation of high skin friction in wall-bounded turbulent flows. A common feature of controlled, friction-reduced turbulent flows is weakened near-wall streamwise vortices. In the present study, the streak transient growth (STG) mechanism for generating near-wall streamwise vortices by Schoppa & Hussain (J. Fluid Mech., vol. 453, 2002, pp. 57–108) is employed, and the opposition control proposed by Choi, Moin & Kim (J. Fluid Mech., vol. 262, 1994, pp. 75–110) is imposed during the transient growth process of perturbations to determine how active control affects the generation of quasi-streamwise vortices. In the transient growth stage, when the detection plane is located near the wall (${ y}_{d}^{+ } = 15$), the control can suppress the production of streamwise vorticity by weakening the near-wall vertical velocity; when the detection plane moves away from the wall (${ y}_{d}^{+ } = 28$), the control has the opposite effect. In the vortex generation stage, the control cannot change the dominance of the stretching effect. Controls imposed at different stages reveal the importance of the STG stage in vortex generation. Strengthened out-of-phase control and lessened in-phase control are proposed as an extension of the original opposition-control scheme. Application in a fully developed turbulent channel flow shows that strengthened ${ y}_{d}^{+ } = 10$ control can yield an even higher drag reduction rate than the original ${ y}_{d}^{+ } = 15$ control. Moreover, lessened ${ y}_{d}^{+ } = 28$ control can also achieve drag reduction and turbulence suppression.


1998 ◽  
Vol 370 ◽  
pp. 101-147 ◽  
Author(s):  
F. M. NAJJAR ◽  
S. BALACHANDAR

The separated flow past a zero-thickness flat plate held normal to a free stream at Re=250 has been investigated through numerical experiments. The long-time signatures of the drag and lift coefficients clearly capture a low-frequency unsteadiness with a period of approximately 10 times the primary shedding period. The amplitude and frequency of drag and lift variations during the shedding process are strongly modulated by the low frequency. A physical interpretation of the low-frequency behaviour is that the flow gradually varies between two different regimes: a regime H of high mean drag and a regime L of low mean drag. It is observed that in regime H the shear layer rolls up closer to the plate to form coherent spanwise vortices, while in regime L the shear layer extends farther downstream and the rolled-up Kármán vortices are less coherent. In the high-drag regime three-dimensionality is characterized by coherent Kármán vortices and reasonably well-organized streamwise vortices connecting the Kármán vortices. With a non-dimensional spanwise wavelength of about 1.2, the three-dimensionality in this regime is reminiscent of mode-B three-dimensionality. It is observed that the high degree of spanwise coherence that exists in regime H breaks down in regime L. Based on detailed numerical flow visualization we conjecture that the formation of streamwise and spanwise vortices is not in perfect synchronization and that the low-frequency unsteadiness is the result of this imbalance (or phase mismatch).


1972 ◽  
Vol 94 (4) ◽  
pp. 749-754 ◽  
Author(s):  
Jin Wu ◽  
M. P. Tulin

Drag reduction caused by ejecting additive solutions from a slot into a pure-water boundary layer on a flat plate has been systematically studied. Results include drag measurements for a plane boundary, smooth and rough, with various openings of the slot and with various concentrations and discharges of the ejected additive solution. Conclusions have been drawn on the additive requirement in external flows and on the ejection technique for an optimum drag reduction.


2002 ◽  
Vol 26 (7-8) ◽  
pp. 1095-1102 ◽  
Author(s):  
James Baker ◽  
James Myatt ◽  
Panagiotis D. Christofides

Sign in / Sign up

Export Citation Format

Share Document