detection plane
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 7)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Vol 11 ◽  
Author(s):  
Lin Wang ◽  
Xiaowei He ◽  
Jingjing Yu

Cerenkov luminescence tomography (CLT) has attracted much attention because of the wide clinically-used probes and three-dimensional (3D) quantification ability. However, due to the serious morbidity of 3D optical imaging, the reconstructed images of CLT are not appreciable, especially when single-view measurements are used. Single-view CLT improves the efficiency of data acquisition. It is much consistent with the actual imaging environment of using commercial imaging system, but bringing the problem that the reconstructed results will be closer to the animal surface on the side where the single-view image is collected. To avoid this problem to the greatest extent possible, we proposed a prior compensation algorithm for CLT reconstruction based on depth calibration strategy. This method takes full account of the fact that the attenuation of light in the tissue will depend heavily on the depth of the light source as well as the distance between the light source and the detection plane. Based on this consideration, a depth calibration matrix was designed to calibrate the attenuation between the surface light flux and the density of the internal light source. The feature of the algorithm was that the depth calibration matrix directly acts on the system matrix of CLT reconstruction, rather than modifying the regularization penalty items. The validity and effectiveness of the proposed algorithm were evaluated with a numerical simulation and a mouse-based experiment, whose results illustrated that it located the radiation sources accurately by using single-view measurements.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiao Lin ◽  
Hao Hu ◽  
Sajan Easo ◽  
Yi Yang ◽  
Yichen Shen ◽  
...  

AbstractCherenkov detectors enable a valuable tool to identify high-energy particles. However, their sensitivity and momentum coverage are limited by the refractive index of host materials. Especially, identifying particles with energy above multiple gigaelectronvolts requires host materials with a near-unity refractive index, which are limited to bulky gas chambers. Overcoming this fundamental material limit is important for future particle detectors yet remains a long-standing challenge. Here, we propose a different paradigm for Cherenkov detectors that utilizes the broadband angular filter made from stacks of variable one-dimensional photonic crystals. Owing to the Brewster effect, the angular filter is transparent only to Cherenkov photons from a precise incident angle. Particle identification is achieved by mapping each Cherenkov angle to the peak-intensity position of transmitted photons in the detection plane. Such angular filtering effect, although decreases the photon number collected in the detection plane, enables the realization of a non-dispersive pseudo refractive index over the entire visible spectrum. Moreover, the pseudo refractive index can be flexibly designed to different values close to unity. Our angular-selective Brewster paradigm offers a feasible solution to implement compact and highly sensitive Cherenkov detectors especially in beam lines with a small angular divergence using regular dielectrics.


2021 ◽  
Author(s):  
Maximino Avendaño Alejo ◽  
Jesús DelOlmo-Márquez ◽  
Gabriel Castillo-Santiago ◽  
Ivan Moreno ◽  
Edwin Román-Hernández ◽  
...  

2021 ◽  
Vol 14 (2) ◽  
pp. 1561-1571
Author(s):  
Florian Richter ◽  
Corneli Keim ◽  
Jérôme Caron ◽  
Jasper Krauser ◽  
Dennis Weise ◽  
...  

Abstract. Wide-field spectrometers for Earth observation missions require in-flight radiometric calibration for which the Sun can be used as a known reference. Therefore, a diffuser is placed in front of the spectrometer in order to scatter the incoming light into the entrance slit and provide homogeneous illumination. The diffuser, however, introduces interference patterns known as speckles into the system, yielding potentially significant intensity variations at the detector plane, called spectral features. There have been several approaches implemented to characterize the spectral features of a spectrometer, e.g., end-to-end measurements with representative instruments. Additionally, in previous publications a measurement technique was proposed, which is based on the acquisition of monochromatic speckles in the entrance slit following a numerical propagation through the disperser to the detection plane. Based on this measurement technique, we present a stand-alone prediction model for the magnitude of spectral features in imaging spectrometers, requiring only few input parameters and, therefore, mitigating the need for expensive measurement campaigns.


Author(s):  
Fabio Fuschino ◽  
Riccardo Campana ◽  
Claudio Labanti ◽  
Lorenzo Amati ◽  
Enrico Virgilli ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Florian Richter ◽  
Corneli Keim ◽  
Jérôme Caron ◽  
Jasper Krauser ◽  
Dennis Weise ◽  
...  

Abstract. Wide-field spectrometers for Earth Observation missions require inflight radiometric calibration, for which the sun can be used as a known reference. Therefor a diffuser is placed in front of the spectrometer in order to scatter the incoming light into the entrance slit and provide homogeneous illumination. The diffuser however, introduces interference patterns known as speckles into the system, yielding potentially significant intensity variations at the detector plane, called Spectral Features. There have been several approaches implemented to characterize the Spectral Features of a spectrometer, e.g. end-to-end measurements with representative instruments. Additionally, in previous publications a measurement technique was proposed, which is based on the acquisition of monochromatic speckles in the entrance slit following a numerical propagation through the disperser to the detection plane. Based on this measurement technique we present a standalone prediction model for the magnitude of Spectral Features in imaging spectrometers, requiring only few input parameters and therefor mitigating the need for expensive measurement campaigns.


Author(s):  
Bao Du ◽  
Hong-Bo Cai ◽  
Wen-Shuai Zhang ◽  
Shi-Yang Zou ◽  
Jing Chen ◽  
...  

The Weibel instability and the induced magnetic field are of great importance for both astrophysics and inertial confinement fusion. Because of the stochasticity of this magnetic field, its main wavelength and mean strength, which are key characteristics of the Weibel instability, are still unobtainable experimentally. In this paper, a theoretical model based on the autocorrelation tensor shows that in proton radiography of the Weibel-instability-induced magnetic field, the proton flux density on the detection plane can be related to the energy spectrum of the magnetic field. It allows us to extract the main wavelength and mean strength of the two-dimensionally isotropic and stochastic magnetic field directly from proton radiography for the first time. Numerical calculations are conducted to verify our theory and show good consistency between pre-set values and the results extracted from proton radiography.


2018 ◽  
Vol 174 ◽  
pp. 01014
Author(s):  
Konstantinos Ntekas

The ATLAS collaboration at LHC has endorsed the resistive Micromegas technology (MM), along with the small-strip Thin Gap Chambers (sTGC), for the high luminosity upgrade of the first muon station in the high-rapidity region, the so called New Small Wheel (NSW) project. The NSW requires fully efficient MM chambers, up to a particle rate of ∼ 15 kHz/cm2, with spatial resolution better than 100 μm independent of the track incidence angle and the magnetic field (B ≤ 0.3 T). Along with the precise tracking the MM should be able to provide a trigger signal, complementary to the sTGC, thus a decent timing resolution is required. Several tests have been performed on small (10 × 10 cm2) MM chambers using medium (10 GeV/c) and high (150 GeV/c) momentum hadron beams at CERN. Results on the efficiency and position resolution measured during these tests are presented demonstrating the excellent characteristics of the MM that fulfil the NSW requirements. Exploiting the ability of the MM to work as a Time Projection Chamber a novel method, called the μTPC, has been developed for the case of inclined tracks, allowing for a precise segment reconstruction using a single detection plane. A detailed description of the method along with thorough studies towards refining the method’s performance are shown. Finally, during 2014 the first MM quadruplet (MMSW) following the NSW design scheme, comprising four detection planes in a stereo readout configuration, has been realised at CERN. Test-beam results of this prototype are discussed and compared to theoretical expectations.


Author(s):  
N. Simões ◽  
J.M. Maia ◽  
R.M. Curado da Silva ◽  
S. Ghithan ◽  
P. Crespo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document