Influence of active control on STG-based generation of streamwise vortices in near-wall turbulence

2012 ◽  
Vol 710 ◽  
pp. 234-259 ◽  
Author(s):  
B.-Q. Deng ◽  
C.-X. Xu

AbstractNear-wall streamwise vortices are closely related to the generation of high skin friction in wall-bounded turbulent flows. A common feature of controlled, friction-reduced turbulent flows is weakened near-wall streamwise vortices. In the present study, the streak transient growth (STG) mechanism for generating near-wall streamwise vortices by Schoppa & Hussain (J. Fluid Mech., vol. 453, 2002, pp. 57–108) is employed, and the opposition control proposed by Choi, Moin & Kim (J. Fluid Mech., vol. 262, 1994, pp. 75–110) is imposed during the transient growth process of perturbations to determine how active control affects the generation of quasi-streamwise vortices. In the transient growth stage, when the detection plane is located near the wall (${ y}_{d}^{+ } = 15$), the control can suppress the production of streamwise vorticity by weakening the near-wall vertical velocity; when the detection plane moves away from the wall (${ y}_{d}^{+ } = 28$), the control has the opposite effect. In the vortex generation stage, the control cannot change the dominance of the stretching effect. Controls imposed at different stages reveal the importance of the STG stage in vortex generation. Strengthened out-of-phase control and lessened in-phase control are proposed as an extension of the original opposition-control scheme. Application in a fully developed turbulent channel flow shows that strengthened ${ y}_{d}^{+ } = 10$ control can yield an even higher drag reduction rate than the original ${ y}_{d}^{+ } = 15$ control. Moreover, lessened ${ y}_{d}^{+ } = 28$ control can also achieve drag reduction and turbulence suppression.

2002 ◽  
Vol 455 ◽  
pp. 289-314 ◽  
Author(s):  
MASAHITO ASAI ◽  
MASAYUKI MINAGAWA ◽  
MICHIO NISHIOKA

The instability of the three-dimensional high-shear layer associated with a near-wall low-speed streak is investigated experimentally. A single low-speed streak, not unlike the near-wall low-speed streaks in transitional and turbulent flows, is produced in a laminar boundary layer by using a small piece of screen set normal to the wall. In order to excite symmetric and anti-symmetric modes separately, well-controlled external disturbances are introduced into the laminar low-speed streak through small holes drilled behind the screen. The growth of the excited symmetric varicose mode is essentially governed by the Kelvin–Helmholtz instability of the in ectional velocity profiles across the streak in the normal-to-wall direction and it can occur when the streak width is larger than the shear-layer thickness. The spatial growth rate of the symmetric mode is very sensitive to the streak width and is rapidly reduced as the velocity defect decreases flowing to the momentum transfer by viscous stresses. By contrast, the anti-symmetric sinuous mode that causes the streak meandering is dominated by the wake-type instability of spanwise velocity distributions across the streak. As far as the linear instability is concerned, the growth rate of the anti-symmetric mode is not so strongly affected by the decrease in the streak width, and its exponential growth may continue further downstream than that of the symmetric mode. As for the mode competition, it is important to note that when the streak width is narrow and comparable with the shear-layer thickness, the low-speed streak becomes more unstable to the anti-symmetric modes than to the symmetric modes. It is clearly demonstrated that the growth of the symmetric mode leads to the formation of hairpin vortices with a pair of counter-rotating streamwise vortices, while the anti-symmetric mode evolves into a train of quasi-streamwise vortices with vorticity of alternate sign.


1995 ◽  
Vol 287 ◽  
pp. 317-348 ◽  
Author(s):  
James M. Hamilton ◽  
John Kim ◽  
Fabian Waleffe

Direct numerical simulations of a highly constrained plane Couette flow are employed to study the dynamics of the structures found in the near-wall region of turbulent flows. Starting from a fully developed turbulent flow, the dimensions of the computational domain are reduced to near the minimum values which will sustain turbulence. A remarkably well-defined, quasi-cyclic and spatially organized process of regeneration of near-wall structures is observed. This process is composed of three distinct phases: formation of streaks by streamwise vortices, breakdown of the streaks, and regeneration of the streamwise vortices. Each phase sets the stage for the next, and these processes are analysed in detail. The most novel results concern vortex regeneration, which is found to be a direct result of the breakdown of streaks that were originally formed by the vortices, and particular emphasis is placed on this process. The spanwise width of the computational domain corresponds closely to the typically observed spanwise spacing of near-wall streaks. When the width of the domain is further reduced, turbulence is no longer sustained. It is suggested that the observed spacing arises because the time scales of streak formation, breakdown and vortex regeneration become mismatched when the streak spacing is too small, and the regeneration cycle at that scale is broken.


2007 ◽  
Vol 584 ◽  
pp. 281-299 ◽  
Author(s):  
KYOUNGYOUN KIM ◽  
CHANG-F. LI ◽  
R. SURESHKUMAR ◽  
S. BALACHANDAR ◽  
RONALD J. ADRIAN

The effects of polymer stresses on near-wall turbulent structures are examined by using direct numerical simulation of fully developed turbulent channel flows with and without polymer stress. The Reynolds number based on friction velocity and half-channel height is 395, and the stresses created by adding polymer are modelled by a finite extensible nonlinear elastic, dumbbell model. Both low- (18%) and high-drag reduction (61%) cases are investigated. Linear stochastic estimation is employed to compute the conditional averages of the near-wall eddies. The conditionally averaged flow fields for Reynolds-stress-maximizing Q2 events show that the near-wall vortical structures are weakened and elongated in the streamwise direction by polymer stresses in a manner similar to that found by Stone et al. (2004) for low-Reynolds-number quasi-streamwise vortices (‘exact coherent states: ECS’). The conditionally averaged fields for the events with large contribution to the polymer work are also examined. The vortical structures in drag-reduced turbulence are very similar to those for the Q2 events, i.e. counter-rotating streamwise vortices near the wall and hairpin vortices above the buffer layer. The three-dimensional distributions of conditionally averaged polymer force around these vortical structures show that the polymer force components oppose the vortical motion. More fundamentally, the torques due to polymer stress are shown to oppose the rotation of the vortices, thereby accounting for their weakening. The observations also extend concepts of the vortex retardation by viscoelastic counter-torques to the heads of hairpins above the buffer layer, and offer an explanation of the mechanism of drag reduction in the outer region of wall turbulence, as well as in the buffer layer.


2015 ◽  
Vol 31 (2) ◽  
pp. 139-152 ◽  
Author(s):  
Yinshan Wang ◽  
Weixi Huang ◽  
Chunxiao Xu

2002 ◽  
Vol 453 ◽  
pp. 57-108 ◽  
Author(s):  
W. SCHOPPA ◽  
F. HUSSAIN

We present a new mechanism for generation of near-wall streamwise vortices – which dominate turbulence phenomena in boundary layers – using linear perturbation analysis and direct numerical simulations of turbulent channel flow. The base flow, consisting of the mean velocity profile and low-speed streaks (free from any initial vortices), is shown to be linearly unstable to sinuous normal modes only for relatively strong streaks, i.e. for wall inclination angles of streak vortex lines exceeding 50°. Analysis of streaks extracted from fully developed near-wall turbulence indicates that about 20% of streak regions in the buffer layer exceed the strength threshold for instability. More importantly, these unstable streaks exhibit only moderate (twofold) normal-mode amplification, the growth being arrested by self-annihilation of streak-flank normal vorticity due to viscous cross-diffusion. We present here an alternative, streak transient growth (STG) mechanism, capable of producing much larger (tenfold) linear ampliflcation of x-dependent disturbances. Note the distinction of STG – responsible for perturbation growth on a streak velocity distribution U(y, z) – from prior transient growth analyses of the (streakless) mean velocity U(y). We reveal that streamwise vortices are generated from the more numerous normal-mode-stable streaks, via a new STG-based scenario: (i) transient growth of perturbations leading to formation of a sheet of streamwise vorticity ωx (by a ‘shearing’ mechanism of vorticity generation), (ii) growth of sinuous streak waviness and hence ∂u/∂x as STG reaches nonlinear amplitude, and (iii) the ωx sheet’s collapse via stretching by ∂u/∂x (rather than rollup) into streamwise vortices. Significantly, the three-dimensional features of the (instantaneous) streamwise vortices of x-alternating sign generated by STG agree well with the (ensemble-averaged) coherent structures educed from fully turbulent flow. The STG-induced formation of internal shear layers, along with quadrant Reynolds stresses and other turbulence measures, also agree well with fully developed turbulence. Results indicate the prominent – possibly dominant – role of this new, transient-growth-based vortex generation scenario, and suggest interesting possibilities for robust control of drag and heat transfer.


2014 ◽  
Vol 750 ◽  
pp. 316-354 ◽  
Author(s):  
H. L. Bai ◽  
Y. Zhou ◽  
W. G. Zhang ◽  
S. J. Xu ◽  
Y. Wang ◽  
...  

AbstractActive control of a turbulent boundary layer has been experimentally investigated with a view to reducing the skin-friction drag and gaining some insight into the mechanism that leads to drag reduction. A spanwise-aligned array of piezo-ceramic actuators was employed to generate a transverse travelling wave along the wall surface, with a specified phase shift between adjacent actuators. Local skin-friction drag exhibits a strong dependence on control parameters, including the wavelength, amplitude and frequency of the oscillation. A maximum drag reduction of 50 % has been achieved at 17 wall units downstream of the actuators. The near-wall flow structure under control, measured using smoke–wire flow visualization, hot-wire and particle image velocimetry techniques, is compared with that without control. The data have been carefully analysed using techniques such as streak detection, power spectra and conditional averaging based on the variable-interval time-average detection. All the results point to a pronounced change in the organization of the perturbed boundary layer. It is proposed that the actuation-induced wave generates a layer of highly regularized streamwise vortices, which acts as a barrier between the large-scale coherent structures and the wall, thus interfering with the turbulence production cycle and contributing partially to the drag reduction. Associated with the generation of regularized vortices is a significant increase, in the near-wall region, of the mean energy dissipation rate, as inferred from a substantial decrease in the Taylor microscale. This increase also contributes to the drag reduction. The scaling of the drag reduction is also examined empirically, providing valuable insight into the active control of drag reduction.


1994 ◽  
Vol 262 ◽  
pp. 75-110 ◽  
Author(s):  
Haecheon Choi ◽  
Parviz Moin ◽  
John Kim

The objective of this study is to explore concepts for active control of turbulent boundary layers leading to skin-friction reduction using the direct numerical simulation technique. Significant drag reduction is achieved when the surface boundary condition is modified to suppress the dynamically significant coherent structures present in the wall region. The drag reduction is accompanied by significant reduction in the intensity of the wall-layer structures and reductions in the magnitude of Reynolds shear stress throughout the flow. The apparent outward shift of turbulence statistics in the controlled flows indicates a displaced virtual origin of the boundary layer and a thickened sublayer. Time sequences of the flow fields show that there are essentially two drag-reduction mechanisms. Firstly, within a short time after the control is applied, drag is reduced mainly by deterring the sweep motion without modifying the primary streamwise vortices above the wall. Consequently, the high-shear-rate regions on the wall are moved to the interior of the channel by the control schemes. Secondly, the active control changes the evolution of the wall vorticity layer by stabilizing and preventing lifting of the spanwise vorticity near the wall, which may suppress a source of new streamwise vortices above the wall.


Sign in / Sign up

Export Citation Format

Share Document