scholarly journals Flexural-gravity waves in ice channel with a lead

2021 ◽  
Vol 921 ◽  
Author(s):  
L.D. Zeng ◽  
A.A. Korobkin ◽  
B.Y. Ni ◽  
Y.Z. Xue

Abstract

2013 ◽  
Vol 54 (3) ◽  
pp. 458-464 ◽  
Author(s):  
V. M. Kozin ◽  
V. L. Zemlyak ◽  
V. Yu. Vereshchagin

2013 ◽  
Vol 54 (64) ◽  
pp. 51-60 ◽  
Author(s):  
Aleksey Marchenko ◽  
Eugene Morozov ◽  
Sergey Muzylev

Abstract A method to estimate the flexural stiffness and effective elastic modulus of floating ice is described and analysed. The method is based on the analysis of water pressure records at two or three locations below the bottom of floating ice when flexural-gravity waves propagate through the ice. The relative errors in the calculations of the ice flexural stiffness and the water depth are analysed. The method is tested using data from field measurements in Tempelfjorden, Svalbard, where flexural-gravity waves were excited by an icefall at the front of the outflow glacier Tunabreen in February 2011.


Author(s):  
Olga Trichtchenko ◽  
Emilian I. Părău ◽  
Jean-Marc Vanden-Broeck ◽  
Paul Milewski

The focus of this work is on three-dimensional nonlinear flexural–gravity waves, propagating at the interface between a fluid and an ice sheet. The ice sheet is modelled using the special Cosserat theory of hyperelastic shells satisfying Kirchhoff's hypothesis, presented in (Plotnikov & Toland. 2011 Phil. Trans. R. Soc. A 369 , 2942–2956 ( doi:10.1098/rsta.2011.0104 )). The fluid is assumed inviscid and incompressible, and the flow irrotational. A numerical method based on boundary integral equation techniques is used to compute solitary waves and forced waves to Euler's equations. This article is part of the theme issue ‘Modelling of sea-ice phenomena’.


2018 ◽  
Vol 373 ◽  
pp. 230-252 ◽  
Author(s):  
Ken Mattsson ◽  
Eric M. Dunham ◽  
Jonatan Werpers

Author(s):  
Arijit Das ◽  
Soumen De ◽  
B N Mandal

Summary The present article is concerned with the radiation of flexural gravity waves due to a thin cap submerged in the ice-covered ocean. The problem is reduced to a system of hypersingular integral equations using the boundary perturbation method. The first-order approximation has only been considered. The effects of the rigidity of the ice sheet and depth of submergence on the added mass and damping coefficient have been analysed. Two types of caps (for example, concave upwards and concave downwards) have been considered for the numerical results. The effect of the concavity on added mass and damping coefficient has also been studied. The present study should be helpful to understand the nature of waves generated by a heaving submerged body in an ice-covered ocean.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012006
Author(s):  
Santanu Koley ◽  
Kottala Panduranga

Abstract In the present paper, point-wise convergence of the eigenfunction expansion to the velocity potential associated with the flexural gravity waves problem in water wave theory is established for infinite water depth case. To take into account the hydroelastic boundary condition at the free surface, a flexible membrane is assumed to float in water waves. In this context, firstly the eigenfunction expansion for the velocity potentials is obtained. Thereafter, an appropriate Green’s function is constructed for the associated boundary value problem. Using suitable properties of the Green’s functions, the vertical components of the eigenfunction expansion is written in terms of the Dirac delta function. Finally, using the property of the Dirac delta function, the convergence of the eigenfunction expansion to the velocity potential is shown.


Sign in / Sign up

Export Citation Format

Share Document