Interaction of flexural gravity waves with shear current in shallow water

2009 ◽  
Vol 36 (11) ◽  
pp. 831-841 ◽  
Author(s):  
J. Bhattacharjee ◽  
T. Sahoo
2020 ◽  
Vol 35 (6) ◽  
pp. 355-366
Author(s):  
Vladimir V. Shashkin ◽  
Gordey S. Goyman

AbstractThis paper proposes the combination of matrix exponential method with the semi-Lagrangian approach for the time integration of shallow water equations on the sphere. The second order accuracy of the developed scheme is shown. Exponential semi-Lagrangian scheme in the combination with spatial approximation on the cubed-sphere grid is verified using the standard test problems for shallow water models. The developed scheme is as good as the conventional semi-implicit semi-Lagrangian scheme in accuracy of slowly varying flow component reproduction and significantly better in the reproduction of the fast inertia-gravity waves. The accuracy of inertia-gravity waves reproduction is close to that of the explicit time-integration scheme. The computational efficiency of the proposed exponential semi-Lagrangian scheme is somewhat lower than the efficiency of semi-implicit semi-Lagrangian scheme, but significantly higher than the efficiency of explicit, semi-implicit, and exponential Eulerian schemes.


2021 ◽  
Vol 921 ◽  
Author(s):  
L.D. Zeng ◽  
A.A. Korobkin ◽  
B.Y. Ni ◽  
Y.Z. Xue

Abstract


2013 ◽  
Vol 54 (3) ◽  
pp. 458-464 ◽  
Author(s):  
V. M. Kozin ◽  
V. L. Zemlyak ◽  
V. Yu. Vereshchagin

2013 ◽  
Vol 54 (64) ◽  
pp. 51-60 ◽  
Author(s):  
Aleksey Marchenko ◽  
Eugene Morozov ◽  
Sergey Muzylev

Abstract A method to estimate the flexural stiffness and effective elastic modulus of floating ice is described and analysed. The method is based on the analysis of water pressure records at two or three locations below the bottom of floating ice when flexural-gravity waves propagate through the ice. The relative errors in the calculations of the ice flexural stiffness and the water depth are analysed. The method is tested using data from field measurements in Tempelfjorden, Svalbard, where flexural-gravity waves were excited by an icefall at the front of the outflow glacier Tunabreen in February 2011.


2018 ◽  
Vol 13 (4) ◽  
pp. 36
Author(s):  
Ranis Ibragimov ◽  
Pirooz Mohazzabi ◽  
Rebecca Roembke ◽  
Justin Van Ee

We examine stability of the vortex that represents one particular class of exact solution of a a nonlinear shallow water model describing atmospheric gravity waves circulating in an equatorial plane of a spherical planet. The mathematical model is represented by a two-dimensional free boundary Cauchy–Poisson problem on the nonstationary motion of a perfect uid around a solid circle with a sufficiently large radius so that the gravity is directed to the center of the circle. It is shown that the model admits two functionally independent nonlinear systems of shallow water equations. Two essential parameters that control stability of the vortex for both systems are identified. The order of their importance is analyzed and it is shown that one of the systems is more resistant to small perturbations and remains stable for larger range of these two parameters.


2020 ◽  
pp. 1097-1103
Author(s):  
A. Navas-Montilla ◽  
C. Juez ◽  
M.J. Franca ◽  
J. Murillo

Author(s):  
Olga Trichtchenko ◽  
Emilian I. Părău ◽  
Jean-Marc Vanden-Broeck ◽  
Paul Milewski

The focus of this work is on three-dimensional nonlinear flexural–gravity waves, propagating at the interface between a fluid and an ice sheet. The ice sheet is modelled using the special Cosserat theory of hyperelastic shells satisfying Kirchhoff's hypothesis, presented in (Plotnikov & Toland. 2011 Phil. Trans. R. Soc. A 369 , 2942–2956 ( doi:10.1098/rsta.2011.0104 )). The fluid is assumed inviscid and incompressible, and the flow irrotational. A numerical method based on boundary integral equation techniques is used to compute solitary waves and forced waves to Euler's equations. This article is part of the theme issue ‘Modelling of sea-ice phenomena’.


Sign in / Sign up

Export Citation Format

Share Document