scholarly journals Thermohaline interleaving induced by horizontal temperature and salinity gradients from above

2021 ◽  
Vol 927 ◽  
Author(s):  
Junyi Li ◽  
Yantao Yang

In this work we show that horizontal gradients of temperature and salinity with compensating effects on density can drive thermohaline intrusion in the fluid layer below. Specifically, different types of double diffusive convection generate differential vertical fluxes from the top boundary, which then sustain horizontal temperature and salinity gradients within the bulk. Interleaving layers develop in the bulk and slope downward towards the cold fresh side, which are of the diffusive type. New layers emerge near the bottom boundary and shift the existing layers upward due to the density difference induced by the divergence of the vertical fluxes through the top surface. Detailed analyses reveal that the present intrusion is consistent with those in the narrow fronts, and both layer thickness and current velocity follow the corresponding scaling laws. Such intrusion process provides an extra path to transfer heat and salinity horizontally towards the cold and fresh side, but transfer the density anomaly towards the warm and salty side. These findings extend the circumstances where thermohaline intrusions may be observed.

1983 ◽  
Vol 137 ◽  
pp. 347-362 ◽  
Author(s):  
Judith Y. Holyer

In this paper we present a linear stability analysis for an unbounded, vertically stratified fluid which has compensating horizontal temperature and salinity gradients, so there is no horizontal density gradient. We obtain the most unstable perturbation for given linear horizontal and vertical gradients and calculate the growth rates, the vertical lengthscale of the intrusion and the slope of the intrusion to the horizontal. We show that the system is most unstable to two-dimensional disturbances and that, except for a small region in which the temperature stratification is unstable and the salinity stratification is stable, the most-unstable disturbance is non-oscillatory. We also obtain a solution to the fully nonlinear equations and calculate the fluxes of heat and salt. The nonlinear solution shows that alternating interfaces of salt-finger and diffusive interfaces will eventually appear on the intrusion when the vertical stratifications are both stable.


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Pejman Hadi Sichani ◽  
Cristian Marchioli ◽  
Francesco Zonta ◽  
Alfredo Soldati

Abstract In this article, we examine the effect of shear on scalar transport in double diffusive convection (DDC). DDC results from the competing action of a stably stratified, rapidly diffusing scalar (temperature) and an unstably stratified, slowly diffusing scalar (salinity), which is characterized by fingering instabilities. We investigate, for the first time, the effect of shear on the diffusive and convective contributions to the total scalar transport flux within a confined fluid layer, examining also the associated fingering dynamics and flow structure. We base our analysis on fully resolved numerical simulations under the Oberbeck–Boussinesq condition. The problem has five governing parameters: The salinity Prandtl number, Prs (momentum-to-salinity diffusivity ratio); the salinity Rayleigh number, Ras (measure of the fluid instability due to salinity differences); the Lewis number, Le (thermal-to-salinity diffusivity ratio); the density ratio, Λ (measure of the effective flow stratification), and the shear rate, Γ. Simulations are performed at fixed Prs, Ras, Le, and Λ, while the effect of shear is accounted for by considering different values of Γ. Preliminary results show that shear tends to damp the growth of fingering instability, leading to highly anisotropic DDC dynamics associated with the formation of regular salinity sheets. These dynamics result in significant modifications of the vertical transport rates, giving rise to negative diffusive fluxes of salinity and significant reduction of the total scalar transport, particularly of its convective part.


2016 ◽  
Vol 802 ◽  
pp. 667-689 ◽  
Author(s):  
Yantao Yang ◽  
Roberto Verzicco ◽  
Detlef Lohse

Direct numerical simulations are conducted for double diffusive convection (DDC) bounded by two parallel plates. The Prandtl numbers, i.e. the ratios between the viscosity and the molecular diffusivities of scalars, are similar to the values of seawater. The DDC flow is driven by an unstable salinity difference (here across the two plates) and stabilized at the same time by a temperature difference. For these conditions the flow can be in the finger regime. We develop scaling laws for three key response parameters of the system: the non-dimensional salinity flux $\mathit{Nu}_{S}$ mainly depends on the salinity Rayleigh number $\mathit{Ra}_{S}$, which measures the strength of the salinity difference and exhibits a very weak dependence on the density ratio $\unicode[STIX]{x1D6EC}$, which is the ratio of the buoyancy forces induced by two scalar differences. The non-dimensional flow velocity $Re$ and the non-dimensional heat flux $\mathit{Nu}_{T}$ are dependent on both $\mathit{Ra}_{S}$ and $\unicode[STIX]{x1D6EC}$. However, the rescaled Reynolds number $Re\unicode[STIX]{x1D6EC}^{\unicode[STIX]{x1D6FC}_{u}^{eff}}$ and the rescaled convective heat flux $(\mathit{Nu}_{T}-1)\unicode[STIX]{x1D6EC}^{\unicode[STIX]{x1D6FC}_{T}^{eff}}$ depend only on $\mathit{Ra}_{S}$. The two exponents are dependent on the fluid properties and are determined from the numerical results as $\unicode[STIX]{x1D6FC}_{u}^{eff}=0.25\pm 0.02$ and $\unicode[STIX]{x1D6FC}_{T}^{eff}=0.75\pm 0.03$. Moreover, the behaviours of $\mathit{Nu}_{S}$ and $Re\unicode[STIX]{x1D6EC}^{\unicode[STIX]{x1D6FC}_{u}^{eff}}$ agree with the predictions of the Grossmann–Lohse theory which was originally developed for the Rayleigh–Bénard flow. The non-dimensional salt-finger width and the thickness of the velocity boundary layers, after being rescaled by $\unicode[STIX]{x1D6EC}^{\unicode[STIX]{x1D6FC}_{u}^{eff}/2}$, collapse and obey a similar power-law scaling relation with $\mathit{Ra}_{S}$. When $\mathit{Ra}_{S}$ is large enough, salt fingers do not extend from one plate to the other and horizontal zonal flows emerge in the bulk region. We then show that the current scaling strategy can be successfully applied to the experimental results of a heat–copper–ion system (Hage & Tilgner, Phys. Fluids, vol. 22, 2010, 076603). The fluid has different properties and the exponent $\unicode[STIX]{x1D6FC}_{u}^{eff}$ takes a different value $0.54\pm 0.10$.


2015 ◽  
Vol 9 (2) ◽  
pp. 63-69 ◽  
Author(s):  
Ramesh Chand ◽  
Gian Chand Rana

AbstractDouble diffusive convection in a horizontal layer of nanofluid in the presence of uniform vertical magnetic field with Soret effect is investigated for more realistic boundary conditions. The flux of volume fraction of nanoparticles is taken to be zero on the isothermal boundaries. The normal mode method is used to find linear stability analysis for the fluid layer. Oscillatory convection is ruled out because of the absence of the two opposing buoyancy forces. Graphs have been plotted to find the effects of various parameters on the stationary convection and it is found that magnetic field, solutal Rayleigh number and nanofluid Lewis number stabilizes fluid layer, while Soret effect, Lewis number, modified diffusivity ratio and nanoparticle Rayleigh number destabilize the fluid layer.


Sign in / Sign up

Export Citation Format

Share Document