Secondary vortex, laminar separation bubble and vortex shedding in flow past a low aspect ratio circular cylinder

2021 ◽  
Vol 930 ◽  
Author(s):  
Gaurav Chopra ◽  
Sanjay Mittal

Large eddy simulation of flow past a circular cylinder of low aspect ratio ( $AR=1$ and $3$ ), spanning subcritical, critical and supercritical regimes, is carried out for $2\times 10^3 \le Re \le 4\times 10^5$ . The end walls restrict three-dimensionality of the flow. The critical $Re$ for the onset of the critical regime is significantly lower for small aspect ratio cylinders. The evolution of secondary vortex (SV), laminar separation bubble (LSB) and the related transition of boundary layer with $Re$ is investigated. The plateau in the surface pressure due to LSB is modified by the presence of SV. Proper orthogonal decomposition of surface pressure reveals that although the vortex shedding mode is most dominant throughout the $Re$ regime studied, significant energy of the flow lies in a symmetric mode that corresponds to expansion–contraction of the vortex formation region and is responsible for bursts of weak vortex shedding. A triple decomposition of the time signals comprising of contributions from shear layer vortices, von Kármán vortex shedding and low frequency modulation due to the symmetric mode of flow is proposed. A moving average, with appropriate size of window, is utilized to estimate the component due to vortex shedding. It is used to assess the variation, with $Re$ , of strength of vortex shedding as well as its coherence along the span. Weakening of vortex shedding in the high subcritical and critical regime is followed by its rejuvenation in the supercritical regime. Its spanwise correlation is high in the subcritical regime, decreases in the critical regime and improves again in the supercritical regime.

Author(s):  
Antoine Ducoin ◽  
Jacques Andre´ Astolfi ◽  
Marie-Laure Gobert

In this paper, we investigate through an experimental approach the laminar to turbulent transition in the boundary-layer flow along a hydrofoil at a Reynolds number of 7.5 × 105, together with the vibrations of the hydrofoil induced by the transition. The latter is caused by a Laminar Separation Bubble (LSB) resulting from a laminar separation of the boundary-layer. The experiments, conducted in the hydrodynamic tunnel of the Research Institute of the French Naval Academy, are based on wall pressure and flow velocity measurements along a rigid hydrofoil, which enable a characterization of the Laminar Separation Bubble and the identification of a vortex shedding at a given frequency. Vibrations measurements are then carried out on a flexible hydrofoil in the same operating conditions. The results indicate that the boundary-layer transition induces important vibrations, whose characteristics in terms of frequency and amplitude depend on the vortex shedding frequency, and can be coupled with natural frequencies.


2021 ◽  
Vol 929 ◽  
Author(s):  
Connor E. Toppings ◽  
Serhiy Yarusevych

The three-dimensional flow topology of a laminar separation bubble forming on the suction surface of a semispan wing with an aspect ratio of $2.5$ and NACA 0018 airfoil section is characterised experimentally using surface pressure measurements and particle image velocimetry at a chord Reynolds number of $125\ 000$ . In the inboard region of the wing, the separation bubble is essentially two-dimensional, and the transition process in the separated shear layer leads to periodic vortex shedding, which dominates the bubble dynamics, similar to two-dimensional separation bubbles. However, progressive spanwise changes in the mean structure and vortex dynamics occur near the wingtip, leading to an open separation and eventual suppression of the bubble. In the immediate proximity of the wingtip, the boundary layer remains attached, no vortex shedding occurs and the flow remains laminar, terminating separation bubble formation. Despite variations in the mean separation bubble topology and vortex dynamics along the span, the fundamental shedding characteristics remain nearly invariant across the portion of the wing where vortex shedding occurs, and the flow appears to lock onto a common instability mode across the span, leading to minimal changes in the mean bubble characteristics despite notable changes in the effective angle of attack along the span. A comparison with available surface flow visualisations from previous studies indicates that the observed changes to the mean bubble footprint along the span of the wing are similar across different geometries and flow characteristics, suggesting similarities in the three-dimensional bubble topology and dynamics on finite wings.


Author(s):  
A. K. De

Vectorized numerical simulations of unsteady wake behind a low-aspect ratio (double amplitude to span ratio 0.3) sinusoidally pitching plate (Strouhal number 0.4 and 0.5) are carried out for the Reynolds number, Re = 150,300. A non-staggered finite volume based predictor-corrector type of algorithm employing 2nd-order time integration and spatial schemes is used. The first sign of instability appears on the plate promoting separation which becomes more vigorous with the increase in Reynolds number. At low Reynolds number, the separation bubble originating near the plate diffuses in the near wake region and the whole wake oscillates with the plate. Fully developed vortex shedding from the rear edge of the plate is observed at a higher Reynolds number. The shed vortices are slowly convected and eventually diffuses completely at a large downstream distance. At a higher forced frequency the wake does not alter significantly at a lower Reynolds number. However, vigorous vortex shedding leading to two layers of vortex streets from both the sides of the plate is observed at a higher Reynolds number.


Author(s):  
Hossein Jabbari ◽  
Mohammad Hassan Djavareshkian ◽  
Ali Esmaeili

Although the tubercle wings provide good maneuverability at post-stall conditions, the aerodynamic performance at pre-stall angles is threatened by forming a laminar separation bubble at the trough section of the tubercle wing; consequently, the flight endurance and range are reduced. In the present study, the idea of passive flow control is introduced by using the distribution of static roughness elements on a full-span wing with a sinusoidal leading edge. Initially, the effect of roughness element length, height, and its location are studied at a pre-stall angle (16-degree). Their effect on the laminar separation bubble and vortex shedding formed behind the wing are also investigated. The Reynolds number is assumed to be equal to [Formula: see text] which is in the range of critical Reynolds number and matches to the micro aerial vehicles application. An improved hybrid model, improved delay detached eddy simulation IDDES, has been used to model the flow turbulence structure. In the extended transition region at low Reynolds numbers, the roughness bypassed the instability. Consequently, roughening the surface of the aerofoil increased the boundary layer’s flow momentum, making it more resistible to adverse pressure gradients. By suppressing the bubble, the static roughness element led to pre-stall flow control, which saw an increase in lift coefficient, [Formula: see text], and a decrease in drag coefficient, [Formula: see text]. The results have been demonstrated that the aerodynamic performance, [Formula: see text], has been improved approximately 22.7%, 38%, and 45% for [Formula: see text], and [Formula: see text], respectively. The optimal arrangement of static roughness elements could decline the size of the vortices and strengthen the cores associated with them. This claim can be interpreted with the vortex shedding frequency.


2012 ◽  
Vol 89 (4) ◽  
pp. 547-562 ◽  
Author(s):  
Daniele Simoni ◽  
Marina Ubaldi ◽  
Pietro Zunino

Sign in / Sign up

Export Citation Format

Share Document