Failure Analysis of Anisotropic Plates by the Boundary Element Method

2014 ◽  
Vol 30 (6) ◽  
pp. 561-570 ◽  
Author(s):  
A. Sahli ◽  
S. Boufeldja ◽  
S. Kebdani ◽  
O. Rahmani

AbstractThis paper presents a dynamic formulation of the boundary element method for stress and failure criterion analyses of anisotropic thin plates. The elastostatic fundamental solutions are used in the formulations and inertia terms are treated as body forces. The radial integration method (RIM) is used to obtain a boundary element formulationithout any domain integral for general anisotropic plate problems. In the RIM, the augmented thin plate spline is used as the approximation function. A formulation for transient analysis is implemented. The time integration is carried out using the Houbolt method. Integral equations for the second derivatives of deflection are developed and all derivatives of fundamental solutions are computed analytically. Only the boundary is discretized in the formulation. Numerical results show good agreement with results available in literature as well as finite element results.

1993 ◽  
Vol 115 (3) ◽  
pp. 262-267 ◽  
Author(s):  
J. Q. Ye

The postbuckling behavior of thin plates under combined loads is studied in this paper by using a mixed boundary element and finite element method. The transverse and the in-plane deformation of the plates are analyzed by the boundary element method and the finite element method, respectively. Spline functions were used as the interpolation functions and shape functions in the solution of both methods. A quadratic rectangular spline element is adopted in the finite element procedure. Numerical results are given for typical problems to show the effectiveness of the proposed approach. The possibilities to extend the method developed in this paper to more complicated postbuckling problems are discussed in the concluding section.


2008 ◽  
Vol 15 (1) ◽  
pp. 33-50 ◽  
Author(s):  
Ho-Won Lee ◽  
Suk-Yoon Hong ◽  
Do-Hyun Park ◽  
Hyun-Wung Kwon

In this paper, Energy Flow Boundary Element Method (EFBEM) was developed to predict the vibration behavior of one- and two-dimensional structures in the medium-to-high frequency ranges. Free Space Green functions used in the method were obtained from EFA energy equations. Direct and indirect EFBEMs were formulated for both one- and two-dimensional cases, and numerically applied to predict the energy density and intensity distributions of simple Euler-Bernoulli beams, single rectangular thin plates, and L-shaped thin plates vibrating in the medium-to-high frequency ranges. The results from these methods were compared with the EFA solutions to verify the EFBEM.


2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Dhananjay Ghangale ◽  
Aires Colaço ◽  
Pedro Alves Costa ◽  
Robert Arcos

This work is focused on the analysis of noise and vibration generated in underground railway tunnels due to train traffic. Specifically, an analysis of noise and vibration generated by train passage in an underground simple tunnel in a homogeneous full-space is presented. In this methodology, a two-and-a-half-dimensional coupled finite element and boundary element method (2.5D FEM-BEM) is used to model soil–structure interaction problems. The noise analysis inside the tunnel is performed using a 2.5D acoustic BEM considering a weak coupling. The method of fundamental solutions (MFS) is used to validate the acoustic BEM methodology. The influence of fastener stiffness on vibration and noise characteristic inside a simple tunnel is investigated.


Sign in / Sign up

Export Citation Format

Share Document