scholarly journals The trace fossil Polykampton recurvum n. isp. (sequestrichnia) from the Maastrichtian–Paleocene deep-sea deposits of NW Italy

2021 ◽  
pp. 1-15
Author(s):  
Alfred Uchman ◽  
Bruno Rattazzi

Abstract Polykampton recurvum n. isp. is the sixth ichnospecies of the ichnogenus Polykampton Ooster, 1869. It is a horizontal structure composed of a median cylindrical tunnel and narrow, usually back-curved lateral lobes located in alternating position. It occurs 2–3 cm below the top of single beds in the Maastrichtian–Paleocene deep-sea turbiditic marlstones of the Monte Antola Unit in the Northern Apennines. The lobes of P. recurvum n. isp. are actively filled with gray mudstone from above through the permanently open median tunnel. The trace fossil belongs to the category sequestrichnia, which is typical of oxygenated deep-sea environments characterized by seasonal or episodic supply of organic matter into a generally oligotrophic environment. P. recurvum n. isp. was produced by a “worm,” probably a polychaete, which adapted to seasonal or only episodic supply of organic matter to the deep-sea floor. The tracemaker stored the organic-rich mud in the lobes for nutrition during times of low organic matter availability on the seafloor. UUID: http://zoobank.org/49555117-1c39-4658-8b49-3f3e2f47ba27

Author(s):  
Michel Praet-Van

This ultrastructural investigation of gametogenesis in a deep-sea anemone of the Bay of Biscay trawled around 2000 m depth, contributes to the knowledge of biology and strategy of reproduction of deep-sea benthos.This sea anemone is dioecious. The sperm appears very similar to those of shallow water sea anemones of the genus, Calliactis. The ultrastructural investigation of oogenesis allows the characteristics of the stages of previtellogenesis and vitellogenesis to be defined. The latter begins with a period of lipogenesis correlated with the formation of a trophonema. Mature oocytes measure up to 180 (im in diameter. Study of spermatogenesis and oogenesis reveals that spawning occurs in April/May. In males, the main area of testicular cysts, full of sperm, reaches maximal development from March to May and, in females, the percentage of mature oocytes decreases from 33% in April to 1% in May.Spawning may be induced by the advent in the deep-sea of the products of the spring phytoplankton bloom. This period of spawning, during the increased deposition of organic matter to the deep-sea floor, may be an advantageous strategy for early development of Paracalliactis.


2022 ◽  
Vol 128 (1) ◽  
Author(s):  
ANDREA BAUCON ◽  
GIROLAMO LO RUSSO ◽  
CARLOS NETO DE CARVALHO ◽  
FABRIZIO FELLETTI

The Italian Northern Apennines are acknowledged as the place where ichnology was born, but there is comparatively little work about their ichnological record. This study bridges this gap by describing two new ichnosites from the locality of Pierfrancesco, which preserve an abundant, low-disparity trace-fossil assemblage within the Late Cretaceous beds of the M. Cassio Flysch. Results show that lithofacies and ichnotaxa are rhythmically organized. The base of each cycle consists of Megagrapton-bearing calciclastic turbidites, which are overlain by marlstone beds with an abundant, low-disparity assemblage of trace fossils. This includes Chondrites intricatus, C. patulus, C. targionii, C. recurvus and Cladichnus fischeri. The cycle top consists of mudstones with no distinct burrows. The rhythmic pattern of Pierfrancesco reflects a deep-sea ecological succession, in which species and behaviour changed as turbidite-related disturbances altered the seafloor. This study opens the question of whether the Chondrites-Cladichnus ichnocoenosis represents low-oxygen or nutrient-poor settings.


1995 ◽  
Vol 348 (1324) ◽  
pp. 179-189 ◽  

The vertical flux and transformation of biogenic particles are im portant processes in the oceanic carbon cycle. Changes in the magnitude of the biological pump can occur in the north eastern Atlantic on both a seasonal and interannual basis. For example, seasonal variations in vertical flux at 47° N 20° W are linked to seasonal ocean productivity variations such as the spring bloom. The size and organic and inorganic content of phytoplankton species, their development and succession also play a role in the scale and composition of the biological pump. The majority of flux is in the form of fast sinking aggregates. Bacteria and transparent exopolymer particle production by phytoplankton have been implicated in aggregate production and mass flux events. Zooplankton grazing and faecal pellet production, their size and composition and extent of their vertical migration also influence the magnitude of vertical flux. Aggregates are formed in the upper ocean, often reaching a maximum concentration just below the seasonal thermocline and can be a food resource to mesozooplankton as well as to the high concentrations of attached bacteria and protozoa. Attached bacteria remineralize and solubilize the aggregate particulate organic carbon. The degree of particle solubilization is likely to be affected by factors controlling enzyme activity and production, for example temperature, pressure or concentration of specific organic molecules, all of which may change during sinking. Attached bacterial growth is greatest on particulate organic matter collected at 500 m which is the depth where studies of 210 Po reveal that there is greatest break-up of rapidly sinking particles. Break-up of particles by feeding zooplankton can also occur. The fraction of sinking POC lost between 150-3100 m at one station in the north eastern Atlantic could supply about 90% of the bacterial carbon demand. Some larger, faster sinking aggregates escape solubilization and disaggregation in the upper 1000 m and arrive in the deep ocean and on the deep-sea bed. Seasonally varying rates of sedimentation are reflected at the deep-sea floor by deposition of phytodetrital material in summer. Approximately 2-4% of surface water primary production reaches the sea floor in 4500 m depth at 47° N 20° W after a sedimentation time of about 4-6 weeks. In this region, concentrations of chloroplastic pigments increased in summer by an order of magnitude, whereas seasonal changes in activity or biomass parameters were smaller. Breakdown of the generally strongly degraded organic matter deposited on deep-sea sediments is mainly accomplished by bacteria. Rates of degradation and efficiency of biomass production depend largely on the proportion of biologically labile material which decreases with advancing decay. It is likely that different levels of organic matter deposition influence the bioturbation rates of larger benthos, which has an effect on transport processes within the sediment and presumably also on microbial degradation rates.


1994 ◽  
Vol 58 (13) ◽  
pp. 2799-2809 ◽  
Author(s):  
Richard A. Jahnke ◽  
Deborah B. Craven ◽  
Jean-Francois Gaillard
Keyword(s):  
Deep Sea ◽  

1992 ◽  
Vol 6 ◽  
pp. 91-91
Author(s):  
A. A. Ekdale

The paleoecology of deep-sea, benthic, macroinvertebrate communities is largely confined to the trace fossil record. While a few taxa have preservable hard parts, most of the deep-sea macrofauna are unpreservable as body fossils below the aragonite or calcite compensation depths. The ichnologic record provides important synecologic information regarding the behavioral diversity and endobenthic habitat partitioning of at least some community members.The deep-sea trace fossil record is strongly influenced by sediment composition (biogenic calcite vs. terrigenous clay), sedimentation regime (pelagic vs. turbidite deposition) and bioturbation history (continuous vs. discontinuous burrowing). These influences are directly reflected in the ichnofabric, or biogenic sedimentary fabric.Ichnofabrics of deep-sea sediments can shed light on the ecologic relationships of the infaunal community (trophic and tiering relationships), occupation of the sea floor by successive and different communities (deciphered from the different trace fossil suites in a composite ichnofabric), stability and firmness of the sedimentary substrate (revealed by burrow distinctness and deformation), interstitial oxygen conditions below the sea floor (determined from the abundance and preservation state of deposit-feeding burrows, such as Chondrites and Zoophycos), and effects of bioturbation patterns on early diagenetic processes (differential cementation and mineralization).The sedimentary habitat of the ancient deep-sea floor changes through time via compaction, dewatering, cementation and secondary mineralization. The benthos that inhabit this changing habitat likewise change according to their differing requirements for burrowing and endobenthic feeding. The resulting ichnofabric reflects a successive occupation of the sea floor by different types of organisms, ranging from shallow burrowers to deep burrowers to hard-substrate borers. Composite ichnofabrics thus can reveal a complex sequence of ecologic and diagenetic events.The tiered structure of infaunal communities in late Cretaceous and early Tertiary shelf-sea chalks is well-known, and because of their pelagic depositional aspect, these situations provide good analogues in outcrop for truly deep-sea environments. In the European and North American chalks, deeply emplaced fodinichnia (Thalassinoides, Chondrites and Zoophycos) typically are superimposed upon shallowly emplaced fodinichnia and pascichnia (Planolites and Teichichnus). Tracks and trails of epifaunal animals certainly were produced at the sediment-water interface, but they are not preserved. Very similar ichnofabrics occur in late Cretaceous and early Tertiary pelagic carbonates in New Zealand, where composite ichnofabrics reveal at least five main phases of occupation of the substrate by burrowers and borers. Multiple generations of Thalassinoides include both burrows and borings, each produced at different stages in the development of a major regional unconformity.Deep-sea pelagic deposits (in kilometers of water) represent a continuous accretion of the sea floor during sediment accumulation, accompanied by a continuous vertical shift of a tiered endobenthic community of burrowers that does not change appreciably over short time intervals. In partial contrast, shelf-sea pelagic deposits (in hundreds of meters of water) are affected more directly by short-term changes in bathymetry, salinity and oxygenation. The response of benthic communities to environmental shifts at the sea floor, therefore, is more pronounced in shelf-sea than in deep-sea settings.


2016 ◽  
Vol 90 (6) ◽  
pp. 1169-1180
Author(s):  
Kentaro Izumi ◽  
Kazuko Yoshizawa

AbstractA co-occurrence of the ichnogenus Phymatoderma and a star-shaped horizontal trace fossil was discovered from Neogene deep-marine deposits (Misaki Formation, central Japan), and is described herein for the first time. Phymatoderma consists of a straight to slightly curved tunnel that shows first- or second-order branches. The tunnels are 5.30–27.25 mm in diameter and are filled with ellipsoidal pellets. The relatively well-preserved star-shaped trace fossil is a large horizontal structure (~18 cm×19 cm) that consists of at least 10 spokes with diameters ranging from 11.49–20.96 mm. As compared to modern analogous surface-feeding traces produced by abyssal echiuran worms and their burrow morphology, it is highly likely that the star-shaped trace fossil and Phymatoderma found from the Misaki Formation are feeding and fecal traces of ancient deep-sea echiurans, respectively. Difference in preservation potential between surface and subsurface traces may result in rare occurrence of star-shaped trace fossils as compared to Phymatoderma. Microscopic observation of the pelletal infill of Phymatoderma also reveals that the trace-maker fed on organic debris and microorganisms such as diatoms and radiolaria.


Author(s):  
Xikun Song ◽  
Mingxin Lyu ◽  
Xiaodi Zhang ◽  
Bernhard Ruthensteiner ◽  
In-Young Ahn ◽  
...  
Keyword(s):  
Deep Sea ◽  

2013 ◽  
Vol 10 (5) ◽  
pp. 2945-2957 ◽  
Author(s):  
A. Dell'Anno ◽  
A. Pusceddu ◽  
C. Corinaldesi ◽  
M. Canals ◽  
S. Heussner ◽  
...  

Abstract. The bioavailability of organic matter in benthic deep-sea ecosystems, commonly used to define their trophic state, can greatly influence key ecological processes such as biomass production and nutrient cycling. Here, we assess the trophic state of deep-sea sediments from open slopes and canyons of the Catalan (NW Mediterranean) and Portuguese (NE Atlantic) continental margins, offshore east and west Iberia, respectively, by using a biomimetic approach based on enzymatic digestion of protein and carbohydrate pools. Patterns of sediment trophic state were analyzed in relation to increasing water depth, including repeated samplings over a 3 yr period in the Catalan margin. Two out of the three sampling periods occurred a few months after dense shelf water cascading events. The benthic deep-sea ecosystems investigated in this study were characterized by high amounts of bioavailable organic matter when compared to other deep-sea sediments. Bioavailable organic matter and its nutritional value were significantly higher in the Portuguese margin than in the Catalan margin, thus reflecting differences in primary productivity of surface waters reported for the two regions. Similarly, sediments of the Catalan margin were characterized by significantly higher food quantity and quality in spring, when the phytoplankton bloom occurs in surface waters, than in summer and autumn. Differences in the benthic trophic state of canyons against open slopes were more evident in the Portuguese than in the Catalan margin. In both continental margins, bioavailable organic C concentrations did not vary or increase with increasing water depth. Overall, our findings suggest that the intensity of primary production processes along with the lateral transfer of organic particles, even amplified by episodic events, can have a role in controlling the quantity and distribution of bioavailable organic detritus and its nutritional value along these continental margin ecosystems.


Sign in / Sign up

Export Citation Format

Share Document