preservation potential
Recently Published Documents


TOTAL DOCUMENTS

203
(FIVE YEARS 53)

H-INDEX

31
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Adrian Broz ◽  
Joanna Clark ◽  
Brad Sutter ◽  
Doug Ming ◽  
Briony Horgan ◽  
...  

Decades of space exploration have shown that surface environments on Mars were habitable billions of years ago. Ancient, buried surface environments, or paleosols, may have been preserved in the geological record on Mars, and are considered high-priority targets for biosignature investigation. Studies of paleosols on Earth that are compositionally similar to putative martian paleosols can provide a reference frame for constraining their organic preservation potential on Mars. However, terrestrial paleosols typically preserve only trace amounts of organic carbon, and it remains unclear whether the organic component of paleosols can be detected with Mars rover-like instruments. Furthermore, the study of terrestrial paleosols is complicated by diagenetic additions of organic carbon, which can confound interpretations of their organic preservation potential. The objectives of this study were a) to determine whether organic carbon in ~30-million-year-old Mars-analog paleosols can be detected with thermal and evolved gas analysis, and b) constrain the age of organic carbon using radiocarbon (14C) dating to identify late diagenetic additions of carbon. Al/ Fe smectite-rich paleosols from the Early Oligocene (33 Ma) John Day Formation in eastern Oregon were examined with a thermal and evolved gas analyzer configured to operate similarly to the Sample Analysis at Mars Evolved Gas Analysis (SAM-EGA) instrument onboard the Mars Science Laboratory Curiosity rover. All samples evolved CO2 with peaks at ~400 °C and ~700° C from the thermal decomposition of refractory organic carbon and small amounts of calcium carbonate, respectively. Evolutions of organic fragments co-occurred with evolutions of CO2 from organic carbon decomposition. Total organic carbon (TOC) ranged from 0.002 - 0.032 ± 0.006 wt. %. Like modern soils, the near-surface horizons of all paleosols had significantly higher TOC relative to subsurface layers. Radiocarbon dating of four samples revealed an organic carbon age ranging between ~6,200 – 14,500 years before present, suggesting there had been inputs of exogenous organic carbon during diagenesis. By contrast, refractory carbon detected with EGA and enrichment of TOC in near-surface horizons of all three buried profiles were consistent with the preservation of trace amounts of endogenous organic carbon. This work demonstrates that near-surface horizons of putative martian paleosols should be considered high priority locations for in-situ biosignature investigation and reveals challenges for examining organic matter preservation in terrestrial paleosols.


Heritage ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 4678-4701
Author(s):  
David John Gregory ◽  
Ole Bennike ◽  
Jørn Bo Jensen ◽  
Peter Rasmussen ◽  
Zyad Al-Hamdani

Using the Mesolithic site of Tudse Hage in the Great Belt of Denmark, this paper proposes a generic stepwise process to create geoarchaeological models that output seamless morphology maps in a GIS. This was achieved using remote sensing databases and the collection of marine geophysical data, above and below the seabed. On the basis of these data, key areas, with sediment sequences representative of the postglacial transgression surfaces, were identified. Core samples were taken for palaeoenvironmental analysis and dating that enabled a reconstruction of the relative sea-level changes. Using this information, palaeogeographic coastline maps of the Kongemose, late Kongemose, Ertebølle, and Neolithic periods in the Tudse Hage area were prepared, and potential hotspots for archaeological sites were proposed. Since their inundation, submerged prehistoric archaeological sites have been, and are, dynamic, with anthropogenic and natural processes affecting their stability and preservation. With the advocation of in situ preservation as a means of managing underwater cultural heritage, predicting where sites have survived these processes, and where they can be found, in advance of subsea development or other anthropogenic exploitation, is essential. Future natural threats to sites preserved in situ were determined through the modelling of seabed currents and sediment erosion.


2021 ◽  
Vol 946 (1) ◽  
pp. 012021
Author(s):  
V M Kaistrenko

Abstract The article is focused on the development of statistical methods of the tsunami recurrence evaluation using paleotsunami data. The new key moment is the creation of a model to quantify the preservation potential of paleotsunami deposits. The article includes a brief overview of the results of studies of the variability and preservation of tsunami deposits. The model was tested on materials about paleotsunami on the coast in the Khalaktyrka area (a village within the city of Petropavlovsk-Kamchatsky), obtained earlier, for four time intervals set by the key-marker volcanic tephra layers in Kamchatka (Ksudach in 1907, Avachinsky in 1855 and 1779, Opala in 606). The maximum likelihood estimates of the number of tsunamigenic horizons for the indicated time intervals are given. The restrictions of the considered model are analyzed.


2021 ◽  
pp. jgs2021-052
Author(s):  
Daniel Paul Le Heron ◽  
Christoph Kettler ◽  
Bethan J. Davies ◽  
Lars Scharfenberg ◽  
Lukas Eder ◽  
...  

The Gepatsch Glacier in Tirol (Austria) is a rapidly retreating valley glacier whose host valley and forefield reveal subglacial, proglacial, and reworked sediment-landform assemblages. Structures include roches moutonées develop on gneiss, compound bedrock-sediment bedforms (crag and tail structures), flutes, and small diamicton ridges. The glacial sediments and landforms are undergoing incision and terrace development by meltwater streams. Glacial geomorphological and surface geological maps maps, in concert with elevation models of difference between July 2019 and July 2020 highlight considerable changes to the forefield over a 12-month time period. Till exposed within the last 20 years has undergone substantial mass wasting and re-deposition as subaerial mass flows, or reworked into stream deposits. The lee sides of many roches moutonées completely lack subglacial sediment, and instead contain a sand and gravel deposit interpreted to result from glaciofluvial deposition. Thus, insights into the rates of erosion and deposition in a complex, proglacial setting, allow some of these processes to be quantified for the first time. Repeated monitoring of glacier forefields is expected to yield a better understanding of the preservation potential of proglacial sedimentary facies, and hence their preservation potential in Earth's sedimentary record.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5664299


Geobiology ◽  
2021 ◽  
Author(s):  
Dylan T. Wilmeth ◽  
Kimberly D. Myers ◽  
Stefan V. Lalonde ◽  
Kaarel Mänd ◽  
Kurt O. Konhauser ◽  
...  

Paleobiology ◽  
2021 ◽  
pp. 1-17
Author(s):  
Konstantina Agiadi ◽  
Michele Azzarone ◽  
Quan Hua ◽  
Darrell S. Kaufman ◽  
Danae Thivaiou ◽  
...  

Abstract Paleobiological and paleoecological interpretations rely on constraining the temporal resolution of the fossil record. The taphonomic clock, that is, a correlation between the alteration of skeletal material and its age, is an approach for quantifying time-averaging scales. We test the taphonomic clock hypothesis for marine demersal and pelagic fish otoliths from a 10–40 m depth transect on the Mediterranean siliciclastic Israeli shelf by radiocarbon dating and taphonomic scoring. Otolith ages span the last ~8000 yr, with considerable variation in median and range along the transect. Severely altered otoliths, contrary to pristine otoliths, are likely to be older than 1000 yr. For pelagic fish otoliths, at 30 m depth, taphonomic degradation correlates positively with postmortem age. In contrast, no correlation occurs for demersal fishes at 10 and 30 m depth, mostly because of the paucity of very young pristine (<150 yr) otoliths, possibly due to a drop in production over the last few centuries. Contrary to molluscan and brachiopod shells, young otoliths at these depths are little affected and do not show a broad spectrum of taphonomic damage, because those that derive from predation are excreted in calcium- and phosphate-rich feces forming an insoluble crystallic matrix that increases their preservation potential. At 40 m depth, all dated otoliths are very young but rather damaged because of locally chemically aggressive sediments, thus showing no correlation between taphonomic grade and postmortem age. Our results show that local conditions and the target species population dynamics must be considered when testing the taphonomic clock hypothesis.


Sign in / Sign up

Export Citation Format

Share Document