The N-star network evolution model

2019 ◽  
Vol 56 (2) ◽  
pp. 416-440 ◽  
Author(s):  
István Fazekas ◽  
Csaba Noszály ◽  
Attila Perecsényi

AbstractA new network evolution model is introduced in this paper. The model is based on cooperations of N units. The units are the nodes of the network and the cooperations are indicated by directed links. At each evolution step N units cooperate, which formally means that they form a directed N-star subgraph. At each step either a new unit joins the network and it cooperates with N − 1 old units, or N old units cooperate. During the evolution both preferential attachment and uniform choice are applied. Asymptotic power law distributions are obtained both for in-degrees and for out-degrees.

2017 ◽  
Vol 13 (03) ◽  
pp. 4 ◽  
Author(s):  
Hui Gao ◽  
Zhixian Yang

<span style="font-family: 'Times New Roman',serif; font-size: 12pt; mso-fareast-font-family: SimSun; mso-fareast-theme-font: minor-fareast; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA;">The Barabási–Albert (BA) model is a famous complex network model that generates scale-free networks. Wireless sensor networks (WSNs) had been thought to be approximately scale-free through lots of empirical research. Based on the BA model, we propose an evolution model for WSNs. According to actual influence factors such as the remainder energy of each sensor and physical link capability of each sensor, our evolution model constructs WSNs by using a preferential attachment mechanism. Through simulation and analysis, we can prove that our evolution model would make the total energy consumption of the WSNs more efficient and have a superior random node error tolerance.</span>


Author(s):  
Qingyi Gao ◽  
Mu Li

The most of the recent models of directed weighted network evolution capture the growth process based on two conventional assumptions: constant average degree assumption and slowly growing diameter assumption. Such evolution models cannot fully support and reflect the dense power law and diameter shrinkage in the process of evolution of real networks. In this paper, a new evolution model, called BBVd, is proposed for directed weighted networks by extending BBV model with the idea of the Forest Fire model. In BBVd, new directed edges are established with probabilities computed based on in/our-strength of nodes, with dynamical evolution of weights for local directed edges. The experimental result shows that the generated networks using BBVd display power-law behavior for the node strength distributions, and moreover, it satisfies the densification power laws and has shrinking diameter.


2019 ◽  
Vol 8 (4) ◽  
Author(s):  
Nicole Eikmeier ◽  
David F Gleich

Abstract Preferential attachment (PA) models are a common class of graph models which have been used to explain why power-law distributions appear in the degree sequences of real network data. Among other properties of real-world networks, they commonly have non-trivial clustering coefficients due to an abundance of triangles as well as power laws in the eigenvalue spectra. Although there are triangle PA models and eigenvalue power laws in specific PA constructions, there are no results that existing constructions have both. In this article, we present a specific Triangle Generalized Preferential Attachment Model that, by construction, has non-trivial clustering. We further prove that this model has a power law in both the degree distribution and eigenvalue spectra.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ghislain Romaric Meleu ◽  
Paulin Yonta Melatagia

AbstractUsing the headers of scientific papers, we have built multilayer networks of entities involved in research namely: authors, laboratories, and institutions. We have analyzed some properties of such networks built from data extracted from the HAL archives and found that the network at each layer is a small-world network with power law distribution. In order to simulate such co-publication network, we propose a multilayer network generation model based on the formation of cliques at each layer and the affiliation of each new node to the higher layers. The clique is built from new and existing nodes selected using preferential attachment. We also show that, the degree distribution of generated layers follows a power law. From the simulations of our model, we show that the generated multilayer networks reproduce the studied properties of co-publication networks.


Information ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 138 ◽  
Author(s):  
Wu ◽  
Shao ◽  
Feng

The evolution of a collaborative innovation network depends on the interrelationships among the innovation subjects. Every single small change affects the network topology, which leads to different evolution results. A logical relationship exists between network evolution and innovative behaviors. An accurate understanding of the characteristics of the network structure can help the innovative subjects to adopt appropriate innovative behaviors. This paper summarizes the three characteristics of collaborative innovation networks, knowledge transfer, policy environment, and periodic cooperation, and it establishes a dynamic evolution model for a resource-priority connection mechanism based on innovation resource theory. The network subjects are not randomly testing all of the potential partners, but have a strong tendency to, which is, innovation resource. The evolution process of a collaborative innovation network is simulated with three different government behaviors as experimental objects. The evolution results show that the government should adopt the policy of supporting the enterprises that recently entered the network, which can maintain the innovation vitality of the network and benefit the innovation output. The results of this study also provide a reference for decision-making by the government and enterprises.


2007 ◽  
Vol 3 (S247) ◽  
pp. 279-287
Author(s):  
Patrick Antolin ◽  
Kazunari Shibata ◽  
Takahiro Kudoh ◽  
Daiko Shiota ◽  
David Brooks

AbstractAlfvén waves can dissipate their energy by means of nonlinear mechanisms, and constitute good candidates to heat and maintain the solar corona to the observed few million degrees. Another appealing candidate is the nanoflare-reconnection heating, in which energy is released through many small magnetic reconnection events. Distinguishing the observational features of each mechanism is an extremely difficult task. On the other hand, observations have shown that energy release processes in the corona follow a power law distribution in frequency whose index may tell us whether small heating events contribute substantially to the heating or not. In this work we show a link between the power law index and the operating heating mechanism in a loop. We set up two coronal loop models: in the first model Alfvén waves created by footpoint shuffling nonlinearly convert to longitudinal modes which dissipate their energy through shocks; in the second model numerous heating events with nanoflare-like energies are input randomly along the loop, either distributed uniformly or concentrated at the footpoints. Both models are based on a 1.5-D MHD code. The obtained coronae differ in many aspects, for instance, in the simulated intensity profile that Hinode/XRT would observe. The intensity histograms display power law distributions whose indexes differ considerably. This number is found to be related to the distribution of the shocks along the loop. We thus test the observational signatures of the power law index as a diagnostic tool for the above heating mechanisms and the influence of the location of nanoflares.


Sign in / Sign up

Export Citation Format

Share Document